Step |
Hyp |
Ref |
Expression |
1 |
|
filnet.h |
|- H = U_ n e. F ( { n } X. n ) |
2 |
|
filnet.d |
|- D = { <. x , y >. | ( ( x e. H /\ y e. H ) /\ ( 1st ` y ) C_ ( 1st ` x ) ) } |
3 |
1 2
|
filnetlem3 |
|- ( H = U. U. D /\ ( F e. ( Fil ` X ) -> ( H C_ ( F X. X ) /\ D e. DirRel ) ) ) |
4 |
3
|
simpri |
|- ( F e. ( Fil ` X ) -> ( H C_ ( F X. X ) /\ D e. DirRel ) ) |
5 |
4
|
simprd |
|- ( F e. ( Fil ` X ) -> D e. DirRel ) |
6 |
|
f2ndres |
|- ( 2nd |` ( F X. X ) ) : ( F X. X ) --> X |
7 |
4
|
simpld |
|- ( F e. ( Fil ` X ) -> H C_ ( F X. X ) ) |
8 |
|
fssres2 |
|- ( ( ( 2nd |` ( F X. X ) ) : ( F X. X ) --> X /\ H C_ ( F X. X ) ) -> ( 2nd |` H ) : H --> X ) |
9 |
6 7 8
|
sylancr |
|- ( F e. ( Fil ` X ) -> ( 2nd |` H ) : H --> X ) |
10 |
|
filtop |
|- ( F e. ( Fil ` X ) -> X e. F ) |
11 |
|
xpexg |
|- ( ( F e. ( Fil ` X ) /\ X e. F ) -> ( F X. X ) e. _V ) |
12 |
10 11
|
mpdan |
|- ( F e. ( Fil ` X ) -> ( F X. X ) e. _V ) |
13 |
12 7
|
ssexd |
|- ( F e. ( Fil ` X ) -> H e. _V ) |
14 |
9 13
|
fexd |
|- ( F e. ( Fil ` X ) -> ( 2nd |` H ) e. _V ) |
15 |
3
|
simpli |
|- H = U. U. D |
16 |
|
dirdm |
|- ( D e. DirRel -> dom D = U. U. D ) |
17 |
5 16
|
syl |
|- ( F e. ( Fil ` X ) -> dom D = U. U. D ) |
18 |
15 17
|
eqtr4id |
|- ( F e. ( Fil ` X ) -> H = dom D ) |
19 |
18
|
feq2d |
|- ( F e. ( Fil ` X ) -> ( ( 2nd |` H ) : H --> X <-> ( 2nd |` H ) : dom D --> X ) ) |
20 |
9 19
|
mpbid |
|- ( F e. ( Fil ` X ) -> ( 2nd |` H ) : dom D --> X ) |
21 |
|
eqid |
|- dom D = dom D |
22 |
21
|
tailf |
|- ( D e. DirRel -> ( tail ` D ) : dom D --> ~P dom D ) |
23 |
5 22
|
syl |
|- ( F e. ( Fil ` X ) -> ( tail ` D ) : dom D --> ~P dom D ) |
24 |
18
|
feq2d |
|- ( F e. ( Fil ` X ) -> ( ( tail ` D ) : H --> ~P dom D <-> ( tail ` D ) : dom D --> ~P dom D ) ) |
25 |
23 24
|
mpbird |
|- ( F e. ( Fil ` X ) -> ( tail ` D ) : H --> ~P dom D ) |
26 |
25
|
adantr |
|- ( ( F e. ( Fil ` X ) /\ t C_ X ) -> ( tail ` D ) : H --> ~P dom D ) |
27 |
|
ffn |
|- ( ( tail ` D ) : H --> ~P dom D -> ( tail ` D ) Fn H ) |
28 |
|
imaeq2 |
|- ( d = ( ( tail ` D ) ` f ) -> ( ( 2nd |` H ) " d ) = ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) ) |
29 |
28
|
sseq1d |
|- ( d = ( ( tail ` D ) ` f ) -> ( ( ( 2nd |` H ) " d ) C_ t <-> ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) C_ t ) ) |
30 |
29
|
rexrn |
|- ( ( tail ` D ) Fn H -> ( E. d e. ran ( tail ` D ) ( ( 2nd |` H ) " d ) C_ t <-> E. f e. H ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) C_ t ) ) |
31 |
26 27 30
|
3syl |
|- ( ( F e. ( Fil ` X ) /\ t C_ X ) -> ( E. d e. ran ( tail ` D ) ( ( 2nd |` H ) " d ) C_ t <-> E. f e. H ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) C_ t ) ) |
32 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
33 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
34 |
32 33
|
ax-mp |
|- 2nd Fn _V |
35 |
|
ssv |
|- H C_ _V |
36 |
|
fnssres |
|- ( ( 2nd Fn _V /\ H C_ _V ) -> ( 2nd |` H ) Fn H ) |
37 |
34 35 36
|
mp2an |
|- ( 2nd |` H ) Fn H |
38 |
|
fnfun |
|- ( ( 2nd |` H ) Fn H -> Fun ( 2nd |` H ) ) |
39 |
37 38
|
ax-mp |
|- Fun ( 2nd |` H ) |
40 |
26
|
ffvelrnda |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( tail ` D ) ` f ) e. ~P dom D ) |
41 |
40
|
elpwid |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( tail ` D ) ` f ) C_ dom D ) |
42 |
18
|
ad2antrr |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> H = dom D ) |
43 |
41 42
|
sseqtrrd |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( tail ` D ) ` f ) C_ H ) |
44 |
37
|
fndmi |
|- dom ( 2nd |` H ) = H |
45 |
43 44
|
sseqtrrdi |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( tail ` D ) ` f ) C_ dom ( 2nd |` H ) ) |
46 |
|
funimass4 |
|- ( ( Fun ( 2nd |` H ) /\ ( ( tail ` D ) ` f ) C_ dom ( 2nd |` H ) ) -> ( ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) C_ t <-> A. d e. ( ( tail ` D ) ` f ) ( ( 2nd |` H ) ` d ) e. t ) ) |
47 |
39 45 46
|
sylancr |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) C_ t <-> A. d e. ( ( tail ` D ) ` f ) ( ( 2nd |` H ) ` d ) e. t ) ) |
48 |
5
|
ad2antrr |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> D e. DirRel ) |
49 |
|
simpr |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> f e. H ) |
50 |
49 42
|
eleqtrd |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> f e. dom D ) |
51 |
|
vex |
|- d e. _V |
52 |
51
|
a1i |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> d e. _V ) |
53 |
21
|
eltail |
|- ( ( D e. DirRel /\ f e. dom D /\ d e. _V ) -> ( d e. ( ( tail ` D ) ` f ) <-> f D d ) ) |
54 |
48 50 52 53
|
syl3anc |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( d e. ( ( tail ` D ) ` f ) <-> f D d ) ) |
55 |
49
|
biantrurd |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( d e. H <-> ( f e. H /\ d e. H ) ) ) |
56 |
55
|
anbi1d |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) <-> ( ( f e. H /\ d e. H ) /\ ( 1st ` d ) C_ ( 1st ` f ) ) ) ) |
57 |
|
vex |
|- f e. _V |
58 |
1 2 57 51
|
filnetlem1 |
|- ( f D d <-> ( ( f e. H /\ d e. H ) /\ ( 1st ` d ) C_ ( 1st ` f ) ) ) |
59 |
56 58
|
bitr4di |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) <-> f D d ) ) |
60 |
54 59
|
bitr4d |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( d e. ( ( tail ` D ) ` f ) <-> ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) ) ) |
61 |
60
|
imbi1d |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( d e. ( ( tail ` D ) ` f ) -> ( ( 2nd |` H ) ` d ) e. t ) <-> ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) -> ( ( 2nd |` H ) ` d ) e. t ) ) ) |
62 |
|
fvres |
|- ( d e. H -> ( ( 2nd |` H ) ` d ) = ( 2nd ` d ) ) |
63 |
62
|
eleq1d |
|- ( d e. H -> ( ( ( 2nd |` H ) ` d ) e. t <-> ( 2nd ` d ) e. t ) ) |
64 |
63
|
adantr |
|- ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) -> ( ( ( 2nd |` H ) ` d ) e. t <-> ( 2nd ` d ) e. t ) ) |
65 |
64
|
pm5.74i |
|- ( ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) -> ( ( 2nd |` H ) ` d ) e. t ) <-> ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) -> ( 2nd ` d ) e. t ) ) |
66 |
|
impexp |
|- ( ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) -> ( 2nd ` d ) e. t ) <-> ( d e. H -> ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) ) ) |
67 |
65 66
|
bitri |
|- ( ( ( d e. H /\ ( 1st ` d ) C_ ( 1st ` f ) ) -> ( ( 2nd |` H ) ` d ) e. t ) <-> ( d e. H -> ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) ) ) |
68 |
61 67
|
bitrdi |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( d e. ( ( tail ` D ) ` f ) -> ( ( 2nd |` H ) ` d ) e. t ) <-> ( d e. H -> ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) ) ) ) |
69 |
68
|
ralbidv2 |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( A. d e. ( ( tail ` D ) ` f ) ( ( 2nd |` H ) ` d ) e. t <-> A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) ) ) |
70 |
47 69
|
bitrd |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ f e. H ) -> ( ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) C_ t <-> A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) ) ) |
71 |
70
|
rexbidva |
|- ( ( F e. ( Fil ` X ) /\ t C_ X ) -> ( E. f e. H ( ( 2nd |` H ) " ( ( tail ` D ) ` f ) ) C_ t <-> E. f e. H A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) ) ) |
72 |
|
vex |
|- k e. _V |
73 |
|
vex |
|- v e. _V |
74 |
72 73
|
op1std |
|- ( d = <. k , v >. -> ( 1st ` d ) = k ) |
75 |
74
|
sseq1d |
|- ( d = <. k , v >. -> ( ( 1st ` d ) C_ ( 1st ` f ) <-> k C_ ( 1st ` f ) ) ) |
76 |
72 73
|
op2ndd |
|- ( d = <. k , v >. -> ( 2nd ` d ) = v ) |
77 |
76
|
eleq1d |
|- ( d = <. k , v >. -> ( ( 2nd ` d ) e. t <-> v e. t ) ) |
78 |
75 77
|
imbi12d |
|- ( d = <. k , v >. -> ( ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) <-> ( k C_ ( 1st ` f ) -> v e. t ) ) ) |
79 |
78
|
raliunxp |
|- ( A. d e. U_ k e. F ( { k } X. k ) ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) <-> A. k e. F A. v e. k ( k C_ ( 1st ` f ) -> v e. t ) ) |
80 |
|
sneq |
|- ( n = k -> { n } = { k } ) |
81 |
|
id |
|- ( n = k -> n = k ) |
82 |
80 81
|
xpeq12d |
|- ( n = k -> ( { n } X. n ) = ( { k } X. k ) ) |
83 |
82
|
cbviunv |
|- U_ n e. F ( { n } X. n ) = U_ k e. F ( { k } X. k ) |
84 |
1 83
|
eqtri |
|- H = U_ k e. F ( { k } X. k ) |
85 |
84
|
raleqi |
|- ( A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) <-> A. d e. U_ k e. F ( { k } X. k ) ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) ) |
86 |
|
dfss3 |
|- ( k C_ t <-> A. v e. k v e. t ) |
87 |
86
|
imbi2i |
|- ( ( k C_ ( 1st ` f ) -> k C_ t ) <-> ( k C_ ( 1st ` f ) -> A. v e. k v e. t ) ) |
88 |
|
r19.21v |
|- ( A. v e. k ( k C_ ( 1st ` f ) -> v e. t ) <-> ( k C_ ( 1st ` f ) -> A. v e. k v e. t ) ) |
89 |
87 88
|
bitr4i |
|- ( ( k C_ ( 1st ` f ) -> k C_ t ) <-> A. v e. k ( k C_ ( 1st ` f ) -> v e. t ) ) |
90 |
89
|
ralbii |
|- ( A. k e. F ( k C_ ( 1st ` f ) -> k C_ t ) <-> A. k e. F A. v e. k ( k C_ ( 1st ` f ) -> v e. t ) ) |
91 |
79 85 90
|
3bitr4i |
|- ( A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) <-> A. k e. F ( k C_ ( 1st ` f ) -> k C_ t ) ) |
92 |
91
|
rexbii |
|- ( E. f e. H A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) <-> E. f e. H A. k e. F ( k C_ ( 1st ` f ) -> k C_ t ) ) |
93 |
1
|
rexeqi |
|- ( E. f e. H A. k e. F ( k C_ ( 1st ` f ) -> k C_ t ) <-> E. f e. U_ n e. F ( { n } X. n ) A. k e. F ( k C_ ( 1st ` f ) -> k C_ t ) ) |
94 |
|
vex |
|- n e. _V |
95 |
|
vex |
|- m e. _V |
96 |
94 95
|
op1std |
|- ( f = <. n , m >. -> ( 1st ` f ) = n ) |
97 |
96
|
sseq2d |
|- ( f = <. n , m >. -> ( k C_ ( 1st ` f ) <-> k C_ n ) ) |
98 |
97
|
imbi1d |
|- ( f = <. n , m >. -> ( ( k C_ ( 1st ` f ) -> k C_ t ) <-> ( k C_ n -> k C_ t ) ) ) |
99 |
98
|
ralbidv |
|- ( f = <. n , m >. -> ( A. k e. F ( k C_ ( 1st ` f ) -> k C_ t ) <-> A. k e. F ( k C_ n -> k C_ t ) ) ) |
100 |
99
|
rexiunxp |
|- ( E. f e. U_ n e. F ( { n } X. n ) A. k e. F ( k C_ ( 1st ` f ) -> k C_ t ) <-> E. n e. F E. m e. n A. k e. F ( k C_ n -> k C_ t ) ) |
101 |
92 93 100
|
3bitri |
|- ( E. f e. H A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) <-> E. n e. F E. m e. n A. k e. F ( k C_ n -> k C_ t ) ) |
102 |
|
fileln0 |
|- ( ( F e. ( Fil ` X ) /\ n e. F ) -> n =/= (/) ) |
103 |
102
|
adantlr |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ n e. F ) -> n =/= (/) ) |
104 |
|
r19.9rzv |
|- ( n =/= (/) -> ( A. k e. F ( k C_ n -> k C_ t ) <-> E. m e. n A. k e. F ( k C_ n -> k C_ t ) ) ) |
105 |
103 104
|
syl |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ n e. F ) -> ( A. k e. F ( k C_ n -> k C_ t ) <-> E. m e. n A. k e. F ( k C_ n -> k C_ t ) ) ) |
106 |
|
ssid |
|- n C_ n |
107 |
|
sseq1 |
|- ( k = n -> ( k C_ n <-> n C_ n ) ) |
108 |
|
sseq1 |
|- ( k = n -> ( k C_ t <-> n C_ t ) ) |
109 |
107 108
|
imbi12d |
|- ( k = n -> ( ( k C_ n -> k C_ t ) <-> ( n C_ n -> n C_ t ) ) ) |
110 |
109
|
rspcv |
|- ( n e. F -> ( A. k e. F ( k C_ n -> k C_ t ) -> ( n C_ n -> n C_ t ) ) ) |
111 |
106 110
|
mpii |
|- ( n e. F -> ( A. k e. F ( k C_ n -> k C_ t ) -> n C_ t ) ) |
112 |
111
|
adantl |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ n e. F ) -> ( A. k e. F ( k C_ n -> k C_ t ) -> n C_ t ) ) |
113 |
|
sstr2 |
|- ( k C_ n -> ( n C_ t -> k C_ t ) ) |
114 |
113
|
com12 |
|- ( n C_ t -> ( k C_ n -> k C_ t ) ) |
115 |
114
|
ralrimivw |
|- ( n C_ t -> A. k e. F ( k C_ n -> k C_ t ) ) |
116 |
112 115
|
impbid1 |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ n e. F ) -> ( A. k e. F ( k C_ n -> k C_ t ) <-> n C_ t ) ) |
117 |
105 116
|
bitr3d |
|- ( ( ( F e. ( Fil ` X ) /\ t C_ X ) /\ n e. F ) -> ( E. m e. n A. k e. F ( k C_ n -> k C_ t ) <-> n C_ t ) ) |
118 |
117
|
rexbidva |
|- ( ( F e. ( Fil ` X ) /\ t C_ X ) -> ( E. n e. F E. m e. n A. k e. F ( k C_ n -> k C_ t ) <-> E. n e. F n C_ t ) ) |
119 |
101 118
|
syl5bb |
|- ( ( F e. ( Fil ` X ) /\ t C_ X ) -> ( E. f e. H A. d e. H ( ( 1st ` d ) C_ ( 1st ` f ) -> ( 2nd ` d ) e. t ) <-> E. n e. F n C_ t ) ) |
120 |
31 71 119
|
3bitrd |
|- ( ( F e. ( Fil ` X ) /\ t C_ X ) -> ( E. d e. ran ( tail ` D ) ( ( 2nd |` H ) " d ) C_ t <-> E. n e. F n C_ t ) ) |
121 |
120
|
pm5.32da |
|- ( F e. ( Fil ` X ) -> ( ( t C_ X /\ E. d e. ran ( tail ` D ) ( ( 2nd |` H ) " d ) C_ t ) <-> ( t C_ X /\ E. n e. F n C_ t ) ) ) |
122 |
|
filn0 |
|- ( F e. ( Fil ` X ) -> F =/= (/) ) |
123 |
94
|
snnz |
|- { n } =/= (/) |
124 |
102 123
|
jctil |
|- ( ( F e. ( Fil ` X ) /\ n e. F ) -> ( { n } =/= (/) /\ n =/= (/) ) ) |
125 |
|
neanior |
|- ( ( { n } =/= (/) /\ n =/= (/) ) <-> -. ( { n } = (/) \/ n = (/) ) ) |
126 |
124 125
|
sylib |
|- ( ( F e. ( Fil ` X ) /\ n e. F ) -> -. ( { n } = (/) \/ n = (/) ) ) |
127 |
|
ss0b |
|- ( ( { n } X. n ) C_ (/) <-> ( { n } X. n ) = (/) ) |
128 |
|
xpeq0 |
|- ( ( { n } X. n ) = (/) <-> ( { n } = (/) \/ n = (/) ) ) |
129 |
127 128
|
bitri |
|- ( ( { n } X. n ) C_ (/) <-> ( { n } = (/) \/ n = (/) ) ) |
130 |
126 129
|
sylnibr |
|- ( ( F e. ( Fil ` X ) /\ n e. F ) -> -. ( { n } X. n ) C_ (/) ) |
131 |
130
|
ralrimiva |
|- ( F e. ( Fil ` X ) -> A. n e. F -. ( { n } X. n ) C_ (/) ) |
132 |
|
r19.2z |
|- ( ( F =/= (/) /\ A. n e. F -. ( { n } X. n ) C_ (/) ) -> E. n e. F -. ( { n } X. n ) C_ (/) ) |
133 |
122 131 132
|
syl2anc |
|- ( F e. ( Fil ` X ) -> E. n e. F -. ( { n } X. n ) C_ (/) ) |
134 |
|
rexnal |
|- ( E. n e. F -. ( { n } X. n ) C_ (/) <-> -. A. n e. F ( { n } X. n ) C_ (/) ) |
135 |
133 134
|
sylib |
|- ( F e. ( Fil ` X ) -> -. A. n e. F ( { n } X. n ) C_ (/) ) |
136 |
1
|
sseq1i |
|- ( H C_ (/) <-> U_ n e. F ( { n } X. n ) C_ (/) ) |
137 |
|
ss0b |
|- ( H C_ (/) <-> H = (/) ) |
138 |
|
iunss |
|- ( U_ n e. F ( { n } X. n ) C_ (/) <-> A. n e. F ( { n } X. n ) C_ (/) ) |
139 |
136 137 138
|
3bitr3i |
|- ( H = (/) <-> A. n e. F ( { n } X. n ) C_ (/) ) |
140 |
139
|
necon3abii |
|- ( H =/= (/) <-> -. A. n e. F ( { n } X. n ) C_ (/) ) |
141 |
135 140
|
sylibr |
|- ( F e. ( Fil ` X ) -> H =/= (/) ) |
142 |
|
dmresi |
|- dom ( _I |` H ) = H |
143 |
1 2
|
filnetlem2 |
|- ( ( _I |` H ) C_ D /\ D C_ ( H X. H ) ) |
144 |
143
|
simpli |
|- ( _I |` H ) C_ D |
145 |
|
dmss |
|- ( ( _I |` H ) C_ D -> dom ( _I |` H ) C_ dom D ) |
146 |
144 145
|
ax-mp |
|- dom ( _I |` H ) C_ dom D |
147 |
142 146
|
eqsstrri |
|- H C_ dom D |
148 |
143
|
simpri |
|- D C_ ( H X. H ) |
149 |
|
dmss |
|- ( D C_ ( H X. H ) -> dom D C_ dom ( H X. H ) ) |
150 |
148 149
|
ax-mp |
|- dom D C_ dom ( H X. H ) |
151 |
|
dmxpid |
|- dom ( H X. H ) = H |
152 |
150 151
|
sseqtri |
|- dom D C_ H |
153 |
147 152
|
eqssi |
|- H = dom D |
154 |
153
|
tailfb |
|- ( ( D e. DirRel /\ H =/= (/) ) -> ran ( tail ` D ) e. ( fBas ` H ) ) |
155 |
5 141 154
|
syl2anc |
|- ( F e. ( Fil ` X ) -> ran ( tail ` D ) e. ( fBas ` H ) ) |
156 |
|
elfm |
|- ( ( X e. F /\ ran ( tail ` D ) e. ( fBas ` H ) /\ ( 2nd |` H ) : H --> X ) -> ( t e. ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) <-> ( t C_ X /\ E. d e. ran ( tail ` D ) ( ( 2nd |` H ) " d ) C_ t ) ) ) |
157 |
10 155 9 156
|
syl3anc |
|- ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) <-> ( t C_ X /\ E. d e. ran ( tail ` D ) ( ( 2nd |` H ) " d ) C_ t ) ) ) |
158 |
|
filfbas |
|- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
159 |
|
elfg |
|- ( F e. ( fBas ` X ) -> ( t e. ( X filGen F ) <-> ( t C_ X /\ E. n e. F n C_ t ) ) ) |
160 |
158 159
|
syl |
|- ( F e. ( Fil ` X ) -> ( t e. ( X filGen F ) <-> ( t C_ X /\ E. n e. F n C_ t ) ) ) |
161 |
121 157 160
|
3bitr4d |
|- ( F e. ( Fil ` X ) -> ( t e. ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) <-> t e. ( X filGen F ) ) ) |
162 |
161
|
eqrdv |
|- ( F e. ( Fil ` X ) -> ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) = ( X filGen F ) ) |
163 |
|
fgfil |
|- ( F e. ( Fil ` X ) -> ( X filGen F ) = F ) |
164 |
162 163
|
eqtr2d |
|- ( F e. ( Fil ` X ) -> F = ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) ) |
165 |
20 164
|
jca |
|- ( F e. ( Fil ` X ) -> ( ( 2nd |` H ) : dom D --> X /\ F = ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) ) ) |
166 |
|
feq1 |
|- ( f = ( 2nd |` H ) -> ( f : dom D --> X <-> ( 2nd |` H ) : dom D --> X ) ) |
167 |
|
oveq2 |
|- ( f = ( 2nd |` H ) -> ( X FilMap f ) = ( X FilMap ( 2nd |` H ) ) ) |
168 |
167
|
fveq1d |
|- ( f = ( 2nd |` H ) -> ( ( X FilMap f ) ` ran ( tail ` D ) ) = ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) ) |
169 |
168
|
eqeq2d |
|- ( f = ( 2nd |` H ) -> ( F = ( ( X FilMap f ) ` ran ( tail ` D ) ) <-> F = ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) ) ) |
170 |
166 169
|
anbi12d |
|- ( f = ( 2nd |` H ) -> ( ( f : dom D --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) <-> ( ( 2nd |` H ) : dom D --> X /\ F = ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) ) ) ) |
171 |
170
|
spcegv |
|- ( ( 2nd |` H ) e. _V -> ( ( ( 2nd |` H ) : dom D --> X /\ F = ( ( X FilMap ( 2nd |` H ) ) ` ran ( tail ` D ) ) ) -> E. f ( f : dom D --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) ) ) |
172 |
14 165 171
|
sylc |
|- ( F e. ( Fil ` X ) -> E. f ( f : dom D --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) ) |
173 |
|
dmeq |
|- ( d = D -> dom d = dom D ) |
174 |
173
|
feq2d |
|- ( d = D -> ( f : dom d --> X <-> f : dom D --> X ) ) |
175 |
|
fveq2 |
|- ( d = D -> ( tail ` d ) = ( tail ` D ) ) |
176 |
175
|
rneqd |
|- ( d = D -> ran ( tail ` d ) = ran ( tail ` D ) ) |
177 |
176
|
fveq2d |
|- ( d = D -> ( ( X FilMap f ) ` ran ( tail ` d ) ) = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) |
178 |
177
|
eqeq2d |
|- ( d = D -> ( F = ( ( X FilMap f ) ` ran ( tail ` d ) ) <-> F = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) ) |
179 |
174 178
|
anbi12d |
|- ( d = D -> ( ( f : dom d --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` d ) ) ) <-> ( f : dom D --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) ) ) |
180 |
179
|
exbidv |
|- ( d = D -> ( E. f ( f : dom d --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` d ) ) ) <-> E. f ( f : dom D --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) ) ) |
181 |
180
|
rspcev |
|- ( ( D e. DirRel /\ E. f ( f : dom D --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` D ) ) ) ) -> E. d e. DirRel E. f ( f : dom d --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` d ) ) ) ) |
182 |
5 172 181
|
syl2anc |
|- ( F e. ( Fil ` X ) -> E. d e. DirRel E. f ( f : dom d --> X /\ F = ( ( X FilMap f ) ` ran ( tail ` d ) ) ) ) |