| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tailf.1 |
|- X = dom D |
| 2 |
|
imassrn |
|- ( D " { x } ) C_ ran D |
| 3 |
|
ssun2 |
|- ran D C_ ( dom D u. ran D ) |
| 4 |
|
dmrnssfld |
|- ( dom D u. ran D ) C_ U. U. D |
| 5 |
3 4
|
sstri |
|- ran D C_ U. U. D |
| 6 |
2 5
|
sstri |
|- ( D " { x } ) C_ U. U. D |
| 7 |
|
dirdm |
|- ( D e. DirRel -> dom D = U. U. D ) |
| 8 |
1 7
|
eqtr2id |
|- ( D e. DirRel -> U. U. D = X ) |
| 9 |
6 8
|
sseqtrid |
|- ( D e. DirRel -> ( D " { x } ) C_ X ) |
| 10 |
|
dmexg |
|- ( D e. DirRel -> dom D e. _V ) |
| 11 |
1 10
|
eqeltrid |
|- ( D e. DirRel -> X e. _V ) |
| 12 |
|
elpw2g |
|- ( X e. _V -> ( ( D " { x } ) e. ~P X <-> ( D " { x } ) C_ X ) ) |
| 13 |
11 12
|
syl |
|- ( D e. DirRel -> ( ( D " { x } ) e. ~P X <-> ( D " { x } ) C_ X ) ) |
| 14 |
9 13
|
mpbird |
|- ( D e. DirRel -> ( D " { x } ) e. ~P X ) |
| 15 |
14
|
ralrimivw |
|- ( D e. DirRel -> A. x e. X ( D " { x } ) e. ~P X ) |
| 16 |
|
eqid |
|- ( x e. X |-> ( D " { x } ) ) = ( x e. X |-> ( D " { x } ) ) |
| 17 |
16
|
fmpt |
|- ( A. x e. X ( D " { x } ) e. ~P X <-> ( x e. X |-> ( D " { x } ) ) : X --> ~P X ) |
| 18 |
15 17
|
sylib |
|- ( D e. DirRel -> ( x e. X |-> ( D " { x } ) ) : X --> ~P X ) |
| 19 |
1
|
tailfval |
|- ( D e. DirRel -> ( tail ` D ) = ( x e. X |-> ( D " { x } ) ) ) |
| 20 |
19
|
feq1d |
|- ( D e. DirRel -> ( ( tail ` D ) : X --> ~P X <-> ( x e. X |-> ( D " { x } ) ) : X --> ~P X ) ) |
| 21 |
18 20
|
mpbird |
|- ( D e. DirRel -> ( tail ` D ) : X --> ~P X ) |