Metamath Proof Explorer


Theorem tailf

Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailf.1
|- X = dom D
Assertion tailf
|- ( D e. DirRel -> ( tail ` D ) : X --> ~P X )

Proof

Step Hyp Ref Expression
1 tailf.1
 |-  X = dom D
2 imassrn
 |-  ( D " { x } ) C_ ran D
3 ssun2
 |-  ran D C_ ( dom D u. ran D )
4 dmrnssfld
 |-  ( dom D u. ran D ) C_ U. U. D
5 3 4 sstri
 |-  ran D C_ U. U. D
6 2 5 sstri
 |-  ( D " { x } ) C_ U. U. D
7 dirdm
 |-  ( D e. DirRel -> dom D = U. U. D )
8 1 7 eqtr2id
 |-  ( D e. DirRel -> U. U. D = X )
9 6 8 sseqtrid
 |-  ( D e. DirRel -> ( D " { x } ) C_ X )
10 dmexg
 |-  ( D e. DirRel -> dom D e. _V )
11 1 10 eqeltrid
 |-  ( D e. DirRel -> X e. _V )
12 elpw2g
 |-  ( X e. _V -> ( ( D " { x } ) e. ~P X <-> ( D " { x } ) C_ X ) )
13 11 12 syl
 |-  ( D e. DirRel -> ( ( D " { x } ) e. ~P X <-> ( D " { x } ) C_ X ) )
14 9 13 mpbird
 |-  ( D e. DirRel -> ( D " { x } ) e. ~P X )
15 14 ralrimivw
 |-  ( D e. DirRel -> A. x e. X ( D " { x } ) e. ~P X )
16 eqid
 |-  ( x e. X |-> ( D " { x } ) ) = ( x e. X |-> ( D " { x } ) )
17 16 fmpt
 |-  ( A. x e. X ( D " { x } ) e. ~P X <-> ( x e. X |-> ( D " { x } ) ) : X --> ~P X )
18 15 17 sylib
 |-  ( D e. DirRel -> ( x e. X |-> ( D " { x } ) ) : X --> ~P X )
19 1 tailfval
 |-  ( D e. DirRel -> ( tail ` D ) = ( x e. X |-> ( D " { x } ) ) )
20 19 feq1d
 |-  ( D e. DirRel -> ( ( tail ` D ) : X --> ~P X <-> ( x e. X |-> ( D " { x } ) ) : X --> ~P X ) )
21 18 20 mpbird
 |-  ( D e. DirRel -> ( tail ` D ) : X --> ~P X )