Metamath Proof Explorer


Theorem tailf

Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailf.1 𝑋 = dom 𝐷
Assertion tailf ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) : 𝑋 ⟶ 𝒫 𝑋 )

Proof

Step Hyp Ref Expression
1 tailf.1 𝑋 = dom 𝐷
2 imassrn ( 𝐷 “ { 𝑥 } ) ⊆ ran 𝐷
3 ssun2 ran 𝐷 ⊆ ( dom 𝐷 ∪ ran 𝐷 )
4 dmrnssfld ( dom 𝐷 ∪ ran 𝐷 ) ⊆ 𝐷
5 3 4 sstri ran 𝐷 𝐷
6 2 5 sstri ( 𝐷 “ { 𝑥 } ) ⊆ 𝐷
7 dirdm ( 𝐷 ∈ DirRel → dom 𝐷 = 𝐷 )
8 1 7 eqtr2id ( 𝐷 ∈ DirRel → 𝐷 = 𝑋 )
9 6 8 sseqtrid ( 𝐷 ∈ DirRel → ( 𝐷 “ { 𝑥 } ) ⊆ 𝑋 )
10 dmexg ( 𝐷 ∈ DirRel → dom 𝐷 ∈ V )
11 1 10 eqeltrid ( 𝐷 ∈ DirRel → 𝑋 ∈ V )
12 elpw2g ( 𝑋 ∈ V → ( ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ↔ ( 𝐷 “ { 𝑥 } ) ⊆ 𝑋 ) )
13 11 12 syl ( 𝐷 ∈ DirRel → ( ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ↔ ( 𝐷 “ { 𝑥 } ) ⊆ 𝑋 ) )
14 9 13 mpbird ( 𝐷 ∈ DirRel → ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 )
15 14 ralrimivw ( 𝐷 ∈ DirRel → ∀ 𝑥𝑋 ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 )
16 eqid ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) = ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) )
17 16 fmpt ( ∀ 𝑥𝑋 ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ↔ ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) : 𝑋 ⟶ 𝒫 𝑋 )
18 15 17 sylib ( 𝐷 ∈ DirRel → ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) : 𝑋 ⟶ 𝒫 𝑋 )
19 1 tailfval ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) )
20 19 feq1d ( 𝐷 ∈ DirRel → ( ( tail ‘ 𝐷 ) : 𝑋 ⟶ 𝒫 𝑋 ↔ ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) : 𝑋 ⟶ 𝒫 𝑋 ) )
21 18 20 mpbird ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) : 𝑋 ⟶ 𝒫 𝑋 )