| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tailf.1 |
⊢ 𝑋 = dom 𝐷 |
| 2 |
|
imassrn |
⊢ ( 𝐷 “ { 𝑥 } ) ⊆ ran 𝐷 |
| 3 |
|
ssun2 |
⊢ ran 𝐷 ⊆ ( dom 𝐷 ∪ ran 𝐷 ) |
| 4 |
|
dmrnssfld |
⊢ ( dom 𝐷 ∪ ran 𝐷 ) ⊆ ∪ ∪ 𝐷 |
| 5 |
3 4
|
sstri |
⊢ ran 𝐷 ⊆ ∪ ∪ 𝐷 |
| 6 |
2 5
|
sstri |
⊢ ( 𝐷 “ { 𝑥 } ) ⊆ ∪ ∪ 𝐷 |
| 7 |
|
dirdm |
⊢ ( 𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷 ) |
| 8 |
1 7
|
eqtr2id |
⊢ ( 𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋 ) |
| 9 |
6 8
|
sseqtrid |
⊢ ( 𝐷 ∈ DirRel → ( 𝐷 “ { 𝑥 } ) ⊆ 𝑋 ) |
| 10 |
|
dmexg |
⊢ ( 𝐷 ∈ DirRel → dom 𝐷 ∈ V ) |
| 11 |
1 10
|
eqeltrid |
⊢ ( 𝐷 ∈ DirRel → 𝑋 ∈ V ) |
| 12 |
|
elpw2g |
⊢ ( 𝑋 ∈ V → ( ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ↔ ( 𝐷 “ { 𝑥 } ) ⊆ 𝑋 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝐷 ∈ DirRel → ( ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ↔ ( 𝐷 “ { 𝑥 } ) ⊆ 𝑋 ) ) |
| 14 |
9 13
|
mpbird |
⊢ ( 𝐷 ∈ DirRel → ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ) |
| 15 |
14
|
ralrimivw |
⊢ ( 𝐷 ∈ DirRel → ∀ 𝑥 ∈ 𝑋 ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) |
| 17 |
16
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝐷 “ { 𝑥 } ) ∈ 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 18 |
15 17
|
sylib |
⊢ ( 𝐷 ∈ DirRel → ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 19 |
1
|
tailfval |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |
| 20 |
19
|
feq1d |
⊢ ( 𝐷 ∈ DirRel → ( ( tail ‘ 𝐷 ) : 𝑋 ⟶ 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) : 𝑋 ⟶ 𝒫 𝑋 ) ) |
| 21 |
18 20
|
mpbird |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) : 𝑋 ⟶ 𝒫 𝑋 ) |