Metamath Proof Explorer


Theorem tailfval

Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1 𝑋 = dom 𝐷
Assertion tailfval ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) )

Proof

Step Hyp Ref Expression
1 tailfval.1 𝑋 = dom 𝐷
2 uniexg ( 𝐷 ∈ DirRel → 𝐷 ∈ V )
3 uniexg ( 𝐷 ∈ V → 𝐷 ∈ V )
4 mptexg ( 𝐷 ∈ V → ( 𝑥 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ∈ V )
5 2 3 4 3syl ( 𝐷 ∈ DirRel → ( 𝑥 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ∈ V )
6 unieq ( 𝑑 = 𝐷 𝑑 = 𝐷 )
7 6 unieqd ( 𝑑 = 𝐷 𝑑 = 𝐷 )
8 imaeq1 ( 𝑑 = 𝐷 → ( 𝑑 “ { 𝑥 } ) = ( 𝐷 “ { 𝑥 } ) )
9 7 8 mpteq12dv ( 𝑑 = 𝐷 → ( 𝑥 𝑑 ↦ ( 𝑑 “ { 𝑥 } ) ) = ( 𝑥 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) )
10 df-tail tail = ( 𝑑 ∈ DirRel ↦ ( 𝑥 𝑑 ↦ ( 𝑑 “ { 𝑥 } ) ) )
11 9 10 fvmptg ( ( 𝐷 ∈ DirRel ∧ ( 𝑥 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ∈ V ) → ( tail ‘ 𝐷 ) = ( 𝑥 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) )
12 5 11 mpdan ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) )
13 dirdm ( 𝐷 ∈ DirRel → dom 𝐷 = 𝐷 )
14 1 13 syl5req ( 𝐷 ∈ DirRel → 𝐷 = 𝑋 )
15 14 mpteq1d ( 𝐷 ∈ DirRel → ( 𝑥 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) = ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) )
16 12 15 eqtrd ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) )