Step |
Hyp |
Ref |
Expression |
1 |
|
tailfval.1 |
⊢ 𝑋 = dom 𝐷 |
2 |
|
uniexg |
⊢ ( 𝐷 ∈ DirRel → ∪ 𝐷 ∈ V ) |
3 |
|
uniexg |
⊢ ( ∪ 𝐷 ∈ V → ∪ ∪ 𝐷 ∈ V ) |
4 |
|
mptexg |
⊢ ( ∪ ∪ 𝐷 ∈ V → ( 𝑥 ∈ ∪ ∪ 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ∈ V ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐷 ∈ DirRel → ( 𝑥 ∈ ∪ ∪ 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ∈ V ) |
6 |
|
unieq |
⊢ ( 𝑑 = 𝐷 → ∪ 𝑑 = ∪ 𝐷 ) |
7 |
6
|
unieqd |
⊢ ( 𝑑 = 𝐷 → ∪ ∪ 𝑑 = ∪ ∪ 𝐷 ) |
8 |
|
imaeq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑑 “ { 𝑥 } ) = ( 𝐷 “ { 𝑥 } ) ) |
9 |
7 8
|
mpteq12dv |
⊢ ( 𝑑 = 𝐷 → ( 𝑥 ∈ ∪ ∪ 𝑑 ↦ ( 𝑑 “ { 𝑥 } ) ) = ( 𝑥 ∈ ∪ ∪ 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |
10 |
|
df-tail |
⊢ tail = ( 𝑑 ∈ DirRel ↦ ( 𝑥 ∈ ∪ ∪ 𝑑 ↦ ( 𝑑 “ { 𝑥 } ) ) ) |
11 |
9 10
|
fvmptg |
⊢ ( ( 𝐷 ∈ DirRel ∧ ( 𝑥 ∈ ∪ ∪ 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ∈ V ) → ( tail ‘ 𝐷 ) = ( 𝑥 ∈ ∪ ∪ 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |
12 |
5 11
|
mpdan |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥 ∈ ∪ ∪ 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |
13 |
|
dirdm |
⊢ ( 𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷 ) |
14 |
1 13
|
eqtr2id |
⊢ ( 𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋 ) |
15 |
14
|
mpteq1d |
⊢ ( 𝐷 ∈ DirRel → ( 𝑥 ∈ ∪ ∪ 𝐷 ↦ ( 𝐷 “ { 𝑥 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |
16 |
12 15
|
eqtrd |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |