Metamath Proof Explorer


Theorem tailfval

Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1 X = dom D
Assertion tailfval D DirRel tail D = x X D x

Proof

Step Hyp Ref Expression
1 tailfval.1 X = dom D
2 uniexg D DirRel D V
3 uniexg D V D V
4 mptexg D V x D D x V
5 2 3 4 3syl D DirRel x D D x V
6 unieq d = D d = D
7 6 unieqd d = D d = D
8 imaeq1 d = D d x = D x
9 7 8 mpteq12dv d = D x d d x = x D D x
10 df-tail tail = d DirRel x d d x
11 9 10 fvmptg D DirRel x D D x V tail D = x D D x
12 5 11 mpdan D DirRel tail D = x D D x
13 dirdm D DirRel dom D = D
14 1 13 eqtr2id D DirRel D = X
15 14 mpteq1d D DirRel x D D x = x X D x
16 12 15 eqtrd D DirRel tail D = x X D x