Metamath Proof Explorer


Theorem dirdm

Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion dirdm RDirReldomR=R

Proof

Step Hyp Ref Expression
1 ssun1 domRdomRranR
2 dmrnssfld domRranRR
3 1 2 sstri domRR
4 3 a1i RDirReldomRR
5 dmresi domIR=R
6 eqid R=R
7 6 isdir RDirRelRDirRelRelRIRRRRRR×RR-1R
8 7 ibi RDirRelRelRIRRRRRR×RR-1R
9 8 simplrd RDirRelIRR
10 dmss IRRdomIRdomR
11 9 10 syl RDirReldomIRdomR
12 5 11 eqsstrrid RDirRelRdomR
13 4 12 eqssd RDirReldomR=R