Metamath Proof Explorer


Theorem dirdm

Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion dirdm R DirRel dom R = R

Proof

Step Hyp Ref Expression
1 ssun1 dom R dom R ran R
2 dmrnssfld dom R ran R R
3 1 2 sstri dom R R
4 3 a1i R DirRel dom R R
5 dmresi dom I R = R
6 eqid R = R
7 6 isdir R DirRel R DirRel Rel R I R R R R R R × R R -1 R
8 7 ibi R DirRel Rel R I R R R R R R × R R -1 R
9 8 simplrd R DirRel I R R
10 dmss I R R dom I R dom R
11 9 10 syl R DirRel dom I R dom R
12 5 11 eqsstrrid R DirRel R dom R
13 4 12 eqssd R DirRel dom R = R