Metamath Proof Explorer


Theorem dirdm

Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion dirdm ( 𝑅 ∈ DirRel → dom 𝑅 = 𝑅 )

Proof

Step Hyp Ref Expression
1 ssun1 dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 )
2 dmrnssfld ( dom 𝑅 ∪ ran 𝑅 ) ⊆ 𝑅
3 1 2 sstri dom 𝑅 𝑅
4 3 a1i ( 𝑅 ∈ DirRel → dom 𝑅 𝑅 )
5 dmresi dom ( I ↾ 𝑅 ) = 𝑅
6 eqid 𝑅 = 𝑅
7 6 isdir ( 𝑅 ∈ DirRel → ( 𝑅 ∈ DirRel ↔ ( ( Rel 𝑅 ∧ ( I ↾ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅 ) ⊆ ( 𝑅𝑅 ) ) ) ) )
8 7 ibi ( 𝑅 ∈ DirRel → ( ( Rel 𝑅 ∧ ( I ↾ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅 ) ⊆ ( 𝑅𝑅 ) ) ) )
9 8 simplrd ( 𝑅 ∈ DirRel → ( I ↾ 𝑅 ) ⊆ 𝑅 )
10 dmss ( ( I ↾ 𝑅 ) ⊆ 𝑅 → dom ( I ↾ 𝑅 ) ⊆ dom 𝑅 )
11 9 10 syl ( 𝑅 ∈ DirRel → dom ( I ↾ 𝑅 ) ⊆ dom 𝑅 )
12 5 11 eqsstrrid ( 𝑅 ∈ DirRel → 𝑅 ⊆ dom 𝑅 )
13 4 12 eqssd ( 𝑅 ∈ DirRel → dom 𝑅 = 𝑅 )