Step |
Hyp |
Ref |
Expression |
1 |
|
ssun1 |
⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) |
2 |
|
dmrnssfld |
⊢ ( dom 𝑅 ∪ ran 𝑅 ) ⊆ ∪ ∪ 𝑅 |
3 |
1 2
|
sstri |
⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
4 |
3
|
a1i |
⊢ ( 𝑅 ∈ DirRel → dom 𝑅 ⊆ ∪ ∪ 𝑅 ) |
5 |
|
dmresi |
⊢ dom ( I ↾ ∪ ∪ 𝑅 ) = ∪ ∪ 𝑅 |
6 |
|
eqid |
⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 |
7 |
6
|
isdir |
⊢ ( 𝑅 ∈ DirRel → ( 𝑅 ∈ DirRel ↔ ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) ) |
8 |
7
|
ibi |
⊢ ( 𝑅 ∈ DirRel → ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) |
9 |
8
|
simplrd |
⊢ ( 𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) |
10 |
|
dmss |
⊢ ( ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 → dom ( I ↾ ∪ ∪ 𝑅 ) ⊆ dom 𝑅 ) |
11 |
9 10
|
syl |
⊢ ( 𝑅 ∈ DirRel → dom ( I ↾ ∪ ∪ 𝑅 ) ⊆ dom 𝑅 ) |
12 |
5 11
|
eqsstrrid |
⊢ ( 𝑅 ∈ DirRel → ∪ ∪ 𝑅 ⊆ dom 𝑅 ) |
13 |
4 12
|
eqssd |
⊢ ( 𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅 ) |