Metamath Proof Explorer


Theorem dirref

Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis dirref.1 𝑋 = dom 𝑅
Assertion dirref ( ( 𝑅 ∈ DirRel ∧ 𝐴𝑋 ) → 𝐴 𝑅 𝐴 )

Proof

Step Hyp Ref Expression
1 dirref.1 𝑋 = dom 𝑅
2 dirdm ( 𝑅 ∈ DirRel → dom 𝑅 = 𝑅 )
3 1 2 eqtrid ( 𝑅 ∈ DirRel → 𝑋 = 𝑅 )
4 3 reseq2d ( 𝑅 ∈ DirRel → ( I ↾ 𝑋 ) = ( I ↾ 𝑅 ) )
5 eqid 𝑅 = 𝑅
6 5 isdir ( 𝑅 ∈ DirRel → ( 𝑅 ∈ DirRel ↔ ( ( Rel 𝑅 ∧ ( I ↾ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅 ) ⊆ ( 𝑅𝑅 ) ) ) ) )
7 6 ibi ( 𝑅 ∈ DirRel → ( ( Rel 𝑅 ∧ ( I ↾ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅 ) ⊆ ( 𝑅𝑅 ) ) ) )
8 7 simplrd ( 𝑅 ∈ DirRel → ( I ↾ 𝑅 ) ⊆ 𝑅 )
9 4 8 eqsstrd ( 𝑅 ∈ DirRel → ( I ↾ 𝑋 ) ⊆ 𝑅 )
10 9 ssbrd ( 𝑅 ∈ DirRel → ( 𝐴 ( I ↾ 𝑋 ) 𝐴𝐴 𝑅 𝐴 ) )
11 eqid 𝐴 = 𝐴
12 resieq ( ( 𝐴𝑋𝐴𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴𝐴 = 𝐴 ) )
13 12 anidms ( 𝐴𝑋 → ( 𝐴 ( I ↾ 𝑋 ) 𝐴𝐴 = 𝐴 ) )
14 11 13 mpbiri ( 𝐴𝑋𝐴 ( I ↾ 𝑋 ) 𝐴 )
15 10 14 impel ( ( 𝑅 ∈ DirRel ∧ 𝐴𝑋 ) → 𝐴 𝑅 𝐴 )