| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirref.1 |
⊢ 𝑋 = dom 𝑅 |
| 2 |
|
dirdm |
⊢ ( 𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅 ) |
| 3 |
1 2
|
eqtrid |
⊢ ( 𝑅 ∈ DirRel → 𝑋 = ∪ ∪ 𝑅 ) |
| 4 |
3
|
reseq2d |
⊢ ( 𝑅 ∈ DirRel → ( I ↾ 𝑋 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
| 5 |
|
eqid |
⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 |
| 6 |
5
|
isdir |
⊢ ( 𝑅 ∈ DirRel → ( 𝑅 ∈ DirRel ↔ ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) ) |
| 7 |
6
|
ibi |
⊢ ( 𝑅 ∈ DirRel → ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) |
| 8 |
7
|
simplrd |
⊢ ( 𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) |
| 9 |
4 8
|
eqsstrd |
⊢ ( 𝑅 ∈ DirRel → ( I ↾ 𝑋 ) ⊆ 𝑅 ) |
| 10 |
9
|
ssbrd |
⊢ ( 𝑅 ∈ DirRel → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 → 𝐴 𝑅 𝐴 ) ) |
| 11 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 12 |
|
resieq |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 ↔ 𝐴 = 𝐴 ) ) |
| 13 |
12
|
anidms |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ( I ↾ 𝑋 ) 𝐴 ↔ 𝐴 = 𝐴 ) ) |
| 14 |
11 13
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ( I ↾ 𝑋 ) 𝐴 ) |
| 15 |
10 14
|
impel |
⊢ ( ( 𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝑅 𝐴 ) |