| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reldir |
⊢ ( 𝑅 ∈ DirRel → Rel 𝑅 ) |
| 2 |
|
brrelex1 |
⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ V ) |
| 3 |
2
|
ex |
⊢ ( Rel 𝑅 → ( 𝐴 𝑅 𝐵 → 𝐴 ∈ V ) ) |
| 4 |
|
brrelex1 |
⊢ ( ( Rel 𝑅 ∧ 𝐵 𝑅 𝐶 ) → 𝐵 ∈ V ) |
| 5 |
4
|
ex |
⊢ ( Rel 𝑅 → ( 𝐵 𝑅 𝐶 → 𝐵 ∈ V ) ) |
| 6 |
3 5
|
anim12d |
⊢ ( Rel 𝑅 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝑅 ∈ DirRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 8 |
|
eqid |
⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 |
| 9 |
8
|
isdir |
⊢ ( 𝑅 ∈ DirRel → ( 𝑅 ∈ DirRel ↔ ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) ) |
| 10 |
9
|
ibi |
⊢ ( 𝑅 ∈ DirRel → ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) |
| 11 |
10
|
simprld |
⊢ ( 𝑅 ∈ DirRel → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
| 12 |
|
cotr |
⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝑅 ∈ DirRel → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 14 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) |
| 16 |
|
breq12 |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 𝑅 𝑧 ↔ 𝐵 𝑅 𝐶 ) ) |
| 17 |
16
|
3adant1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑦 𝑅 𝑧 ↔ 𝐵 𝑅 𝐶 ) ) |
| 18 |
15 17
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| 19 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝑅 𝑧 ↔ 𝐴 𝑅 𝐶 ) ) |
| 20 |
19
|
3adant2 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝑥 𝑅 𝑧 ↔ 𝐴 𝑅 𝐶 ) ) |
| 21 |
18 20
|
imbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 22 |
21
|
spc3gv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 23 |
13 22
|
syl5 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( 𝑅 ∈ DirRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 24 |
23
|
3expia |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐶 ∈ 𝑉 → ( 𝑅 ∈ DirRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) ) |
| 25 |
24
|
com4t |
⊢ ( 𝑅 ∈ DirRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐶 ∈ 𝑉 → 𝐴 𝑅 𝐶 ) ) ) ) |
| 26 |
7 25
|
mpdd |
⊢ ( 𝑅 ∈ DirRel → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( 𝐶 ∈ 𝑉 → 𝐴 𝑅 𝐶 ) ) ) |
| 27 |
26
|
imp31 |
⊢ ( ( ( 𝑅 ∈ DirRel ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) ∧ 𝐶 ∈ 𝑉 ) → 𝐴 𝑅 𝐶 ) |
| 28 |
27
|
an32s |
⊢ ( ( ( 𝑅 ∈ DirRel ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) → 𝐴 𝑅 𝐶 ) |