Metamath Proof Explorer


Theorem reldir

Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion reldir ( 𝑅 ∈ DirRel → Rel 𝑅 )

Proof

Step Hyp Ref Expression
1 eqid 𝑅 = 𝑅
2 1 isdir ( 𝑅 ∈ DirRel → ( 𝑅 ∈ DirRel ↔ ( ( Rel 𝑅 ∧ ( I ↾ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅 ) ⊆ ( 𝑅𝑅 ) ) ) ) )
3 2 ibi ( 𝑅 ∈ DirRel → ( ( Rel 𝑅 ∧ ( I ↾ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅 ) ⊆ ( 𝑅𝑅 ) ) ) )
4 3 simplld ( 𝑅 ∈ DirRel → Rel 𝑅 )