Metamath Proof Explorer
Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009)
(Revised by Mario Carneiro, 22-Nov-2013)
|
|
Ref |
Expression |
|
Assertion |
reldir |
⊢ ( 𝑅 ∈ DirRel → Rel 𝑅 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 |
2 |
1
|
isdir |
⊢ ( 𝑅 ∈ DirRel → ( 𝑅 ∈ DirRel ↔ ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) ) |
3 |
2
|
ibi |
⊢ ( 𝑅 ∈ DirRel → ( ( Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅 ) ⊆ 𝑅 ) ∧ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( ∪ ∪ 𝑅 × ∪ ∪ 𝑅 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) |
4 |
3
|
simplld |
⊢ ( 𝑅 ∈ DirRel → Rel 𝑅 ) |