| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spc3egv.1 | 
							⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							notbid | 
							⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵  ∧  𝑧  =  𝐶 )  →  ( ¬  𝜑  ↔  ¬  𝜓 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							spc3egv | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ¬  𝜓  →  ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬  𝜑 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							exnal | 
							⊢ ( ∃ 𝑧 ¬  𝜑  ↔  ¬  ∀ 𝑧 𝜑 )  | 
						
						
							| 5 | 
							
								4
							 | 
							exbii | 
							⊢ ( ∃ 𝑦 ∃ 𝑧 ¬  𝜑  ↔  ∃ 𝑦 ¬  ∀ 𝑧 𝜑 )  | 
						
						
							| 6 | 
							
								
							 | 
							exnal | 
							⊢ ( ∃ 𝑦 ¬  ∀ 𝑧 𝜑  ↔  ¬  ∀ 𝑦 ∀ 𝑧 𝜑 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitri | 
							⊢ ( ∃ 𝑦 ∃ 𝑧 ¬  𝜑  ↔  ¬  ∀ 𝑦 ∀ 𝑧 𝜑 )  | 
						
						
							| 8 | 
							
								7
							 | 
							exbii | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬  𝜑  ↔  ∃ 𝑥 ¬  ∀ 𝑦 ∀ 𝑧 𝜑 )  | 
						
						
							| 9 | 
							
								
							 | 
							exnal | 
							⊢ ( ∃ 𝑥 ¬  ∀ 𝑦 ∀ 𝑧 𝜑  ↔  ¬  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitr2i | 
							⊢ ( ¬  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑  ↔  ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬  𝜑 )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							imbitrrdi | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ¬  𝜓  →  ¬  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							con4d | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑  →  𝜓 ) )  |