| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spc3egv.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
1
|
notbid |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 3 |
2
|
spc3egv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ¬ 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ) ) |
| 4 |
|
exnal |
⊢ ( ∃ 𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑧 𝜑 ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ∃ 𝑦 ¬ ∀ 𝑧 𝜑 ) |
| 6 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ∀ 𝑧 𝜑 ↔ ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
| 7 |
5 6
|
bitri |
⊢ ( ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
| 9 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ) |
| 10 |
8 9
|
bitr2i |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ) |
| 11 |
3 10
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ¬ 𝜓 → ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ) ) |
| 12 |
11
|
con4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 → 𝜓 ) ) |