Metamath Proof Explorer


Theorem dirtr

Description: A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion dirtr R DirRel C V A R B B R C A R C

Proof

Step Hyp Ref Expression
1 reldir R DirRel Rel R
2 brrelex1 Rel R A R B A V
3 2 ex Rel R A R B A V
4 brrelex1 Rel R B R C B V
5 4 ex Rel R B R C B V
6 3 5 anim12d Rel R A R B B R C A V B V
7 1 6 syl R DirRel A R B B R C A V B V
8 eqid R = R
9 8 isdir R DirRel R DirRel Rel R I R R R R R R × R R -1 R
10 9 ibi R DirRel Rel R I R R R R R R × R R -1 R
11 10 simprld R DirRel R R R
12 cotr R R R x y z x R y y R z x R z
13 11 12 sylib R DirRel x y z x R y y R z x R z
14 breq12 x = A y = B x R y A R B
15 14 3adant3 x = A y = B z = C x R y A R B
16 breq12 y = B z = C y R z B R C
17 16 3adant1 x = A y = B z = C y R z B R C
18 15 17 anbi12d x = A y = B z = C x R y y R z A R B B R C
19 breq12 x = A z = C x R z A R C
20 19 3adant2 x = A y = B z = C x R z A R C
21 18 20 imbi12d x = A y = B z = C x R y y R z x R z A R B B R C A R C
22 21 spc3gv A V B V C V x y z x R y y R z x R z A R B B R C A R C
23 13 22 syl5 A V B V C V R DirRel A R B B R C A R C
24 23 3expia A V B V C V R DirRel A R B B R C A R C
25 24 com4t R DirRel A R B B R C A V B V C V A R C
26 7 25 mpdd R DirRel A R B B R C C V A R C
27 26 imp31 R DirRel A R B B R C C V A R C
28 27 an32s R DirRel C V A R B B R C A R C