Metamath Proof Explorer


Theorem isdir

Description: A condition for a relation to be a direction. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis isdir.1 A=R
Assertion isdir RVRDirRelRelRIARRRRA×AR-1R

Proof

Step Hyp Ref Expression
1 isdir.1 A=R
2 releq r=RRelrRelR
3 unieq r=Rr=R
4 3 unieqd r=Rr=R
5 4 1 eqtr4di r=Rr=A
6 5 reseq2d r=RIr=IA
7 id r=Rr=R
8 6 7 sseq12d r=RIrrIAR
9 2 8 anbi12d r=RRelrIrrRelRIAR
10 7 7 coeq12d r=Rrr=RR
11 10 7 sseq12d r=RrrrRRR
12 5 sqxpeqd r=Rr×r=A×A
13 cnveq r=Rr-1=R-1
14 13 7 coeq12d r=Rr-1r=R-1R
15 12 14 sseq12d r=Rr×rr-1rA×AR-1R
16 11 15 anbi12d r=Rrrrr×rr-1rRRRA×AR-1R
17 9 16 anbi12d r=RRelrIrrrrrr×rr-1rRelRIARRRRA×AR-1R
18 df-dir DirRel=r|RelrIrrrrrr×rr-1r
19 17 18 elab2g RVRDirRelRelRIARRRRA×AR-1R