Metamath Proof Explorer


Definition df-dir

Description: Define the class of directed sets (the order relation itself is sometimes called a direction, and a directed set is a set equipped with a direction). (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Assertion df-dir DirRel=r|RelrIrrrrrr×rr-1r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdir classDirRel
1 vr setvarr
2 1 cv setvarr
3 2 wrel wffRelr
4 cid classI
5 2 cuni classr
6 5 cuni classr
7 4 6 cres classIr
8 7 2 wss wffIrr
9 3 8 wa wffRelrIrr
10 2 2 ccom classrr
11 10 2 wss wffrrr
12 6 6 cxp classr×r
13 2 ccnv classr-1
14 13 2 ccom classr-1r
15 12 14 wss wffr×rr-1r
16 11 15 wa wffrrrr×rr-1r
17 9 16 wa wffRelrIrrrrrr×rr-1r
18 17 1 cab classr|RelrIrrrrrr×rr-1r
19 0 18 wceq wffDirRel=r|RelrIrrrrrr×rr-1r