Metamath Proof Explorer


Definition df-tail

Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Assertion df-tail tail = r DirRel x r r x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctail class tail
1 vr setvar r
2 cdir class DirRel
3 vx setvar x
4 1 cv setvar r
5 4 cuni class r
6 5 cuni class r
7 3 cv setvar x
8 7 csn class x
9 4 8 cima class r x
10 3 6 9 cmpt class x r r x
11 1 2 10 cmpt class r DirRel x r r x
12 0 11 wceq wff tail = r DirRel x r r x