Metamath Proof Explorer


Definition df-tail

Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Assertion df-tail tail=rDirRelxrrx

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctail classtail
1 vr setvarr
2 cdir classDirRel
3 vx setvarx
4 1 cv setvarr
5 4 cuni classr
6 5 cuni classr
7 3 cv setvarx
8 7 csn classx
9 4 8 cima classrx
10 3 6 9 cmpt classxrrx
11 1 2 10 cmpt classrDirRelxrrx
12 0 11 wceq wfftail=rDirRelxrrx