Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tail | ⊢ tail = ( 𝑟 ∈ DirRel ↦ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | ctail | ⊢ tail | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cdir | ⊢ DirRel | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑟 | 
| 5 | 4 | cuni | ⊢ ∪ 𝑟 | 
| 6 | 5 | cuni | ⊢ ∪ ∪ 𝑟 | 
| 7 | 3 | cv | ⊢ 𝑥 | 
| 8 | 7 | csn | ⊢ { 𝑥 } | 
| 9 | 4 8 | cima | ⊢ ( 𝑟 “ { 𝑥 } ) | 
| 10 | 3 6 9 | cmpt | ⊢ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) | 
| 11 | 1 2 10 | cmpt | ⊢ ( 𝑟 ∈ DirRel ↦ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) ) | 
| 12 | 0 11 | wceq | ⊢ tail = ( 𝑟 ∈ DirRel ↦ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) ) |