Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-tail | ⊢ tail = ( 𝑟 ∈ DirRel ↦ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctail | ⊢ tail | |
1 | vr | ⊢ 𝑟 | |
2 | cdir | ⊢ DirRel | |
3 | vx | ⊢ 𝑥 | |
4 | 1 | cv | ⊢ 𝑟 |
5 | 4 | cuni | ⊢ ∪ 𝑟 |
6 | 5 | cuni | ⊢ ∪ ∪ 𝑟 |
7 | 3 | cv | ⊢ 𝑥 |
8 | 7 | csn | ⊢ { 𝑥 } |
9 | 4 8 | cima | ⊢ ( 𝑟 “ { 𝑥 } ) |
10 | 3 6 9 | cmpt | ⊢ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) |
11 | 1 2 10 | cmpt | ⊢ ( 𝑟 ∈ DirRel ↦ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) ) |
12 | 0 11 | wceq | ⊢ tail = ( 𝑟 ∈ DirRel ↦ ( 𝑥 ∈ ∪ ∪ 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) ) |