Metamath Proof Explorer


Definition df-tail

Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Assertion df-tail tail = ( 𝑟 ∈ DirRel ↦ ( 𝑥 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctail tail
1 vr 𝑟
2 cdir DirRel
3 vx 𝑥
4 1 cv 𝑟
5 4 cuni 𝑟
6 5 cuni 𝑟
7 3 cv 𝑥
8 7 csn { 𝑥 }
9 4 8 cima ( 𝑟 “ { 𝑥 } )
10 3 6 9 cmpt ( 𝑥 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) )
11 1 2 10 cmpt ( 𝑟 ∈ DirRel ↦ ( 𝑥 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) )
12 0 11 wceq tail = ( 𝑟 ∈ DirRel ↦ ( 𝑥 𝑟 ↦ ( 𝑟 “ { 𝑥 } ) ) )