Metamath Proof Explorer


Definition df-tail

Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Assertion df-tail
|- tail = ( r e. DirRel |-> ( x e. U. U. r |-> ( r " { x } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctail
 |-  tail
1 vr
 |-  r
2 cdir
 |-  DirRel
3 vx
 |-  x
4 1 cv
 |-  r
5 4 cuni
 |-  U. r
6 5 cuni
 |-  U. U. r
7 3 cv
 |-  x
8 7 csn
 |-  { x }
9 4 8 cima
 |-  ( r " { x } )
10 3 6 9 cmpt
 |-  ( x e. U. U. r |-> ( r " { x } ) )
11 1 2 10 cmpt
 |-  ( r e. DirRel |-> ( x e. U. U. r |-> ( r " { x } ) ) )
12 0 11 wceq
 |-  tail = ( r e. DirRel |-> ( x e. U. U. r |-> ( r " { x } ) ) )