Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-tail | |- tail = ( r e. DirRel |-> ( x e. U. U. r |-> ( r " { x } ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctail | |- tail |
|
1 | vr | |- r |
|
2 | cdir | |- DirRel |
|
3 | vx | |- x |
|
4 | 1 | cv | |- r |
5 | 4 | cuni | |- U. r |
6 | 5 | cuni | |- U. U. r |
7 | 3 | cv | |- x |
8 | 7 | csn | |- { x } |
9 | 4 8 | cima | |- ( r " { x } ) |
10 | 3 6 9 | cmpt | |- ( x e. U. U. r |-> ( r " { x } ) ) |
11 | 1 2 10 | cmpt | |- ( r e. DirRel |-> ( x e. U. U. r |-> ( r " { x } ) ) ) |
12 | 0 11 | wceq | |- tail = ( r e. DirRel |-> ( x e. U. U. r |-> ( r " { x } ) ) ) |