Metamath Proof Explorer


Definition df-dir

Description: Define the class of directed sets (the order relation itself is sometimes called a direction, and a directed set is a set equipped with a direction). (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Assertion df-dir DirRel = { 𝑟 ∣ ( ( Rel 𝑟 ∧ ( I ↾ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟 ) ⊆ ( 𝑟𝑟 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdir DirRel
1 vr 𝑟
2 1 cv 𝑟
3 2 wrel Rel 𝑟
4 cid I
5 2 cuni 𝑟
6 5 cuni 𝑟
7 4 6 cres ( I ↾ 𝑟 )
8 7 2 wss ( I ↾ 𝑟 ) ⊆ 𝑟
9 3 8 wa ( Rel 𝑟 ∧ ( I ↾ 𝑟 ) ⊆ 𝑟 )
10 2 2 ccom ( 𝑟𝑟 )
11 10 2 wss ( 𝑟𝑟 ) ⊆ 𝑟
12 6 6 cxp ( 𝑟 × 𝑟 )
13 2 ccnv 𝑟
14 13 2 ccom ( 𝑟𝑟 )
15 12 14 wss ( 𝑟 × 𝑟 ) ⊆ ( 𝑟𝑟 )
16 11 15 wa ( ( 𝑟𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟 ) ⊆ ( 𝑟𝑟 ) )
17 9 16 wa ( ( Rel 𝑟 ∧ ( I ↾ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟 ) ⊆ ( 𝑟𝑟 ) ) )
18 17 1 cab { 𝑟 ∣ ( ( Rel 𝑟 ∧ ( I ↾ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟 ) ⊆ ( 𝑟𝑟 ) ) ) }
19 0 18 wceq DirRel = { 𝑟 ∣ ( ( Rel 𝑟 ∧ ( I ↾ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟 ) ⊆ ( 𝑟𝑟 ) ) ) }