| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdir | ⊢ DirRel | 
						
							| 1 |  | vr | ⊢ 𝑟 | 
						
							| 2 | 1 | cv | ⊢ 𝑟 | 
						
							| 3 | 2 | wrel | ⊢ Rel  𝑟 | 
						
							| 4 |  | cid | ⊢  I | 
						
							| 5 | 2 | cuni | ⊢ ∪  𝑟 | 
						
							| 6 | 5 | cuni | ⊢ ∪  ∪  𝑟 | 
						
							| 7 | 4 6 | cres | ⊢ (  I   ↾  ∪  ∪  𝑟 ) | 
						
							| 8 | 7 2 | wss | ⊢ (  I   ↾  ∪  ∪  𝑟 )  ⊆  𝑟 | 
						
							| 9 | 3 8 | wa | ⊢ ( Rel  𝑟  ∧  (  I   ↾  ∪  ∪  𝑟 )  ⊆  𝑟 ) | 
						
							| 10 | 2 2 | ccom | ⊢ ( 𝑟  ∘  𝑟 ) | 
						
							| 11 | 10 2 | wss | ⊢ ( 𝑟  ∘  𝑟 )  ⊆  𝑟 | 
						
							| 12 | 6 6 | cxp | ⊢ ( ∪  ∪  𝑟  ×  ∪  ∪  𝑟 ) | 
						
							| 13 | 2 | ccnv | ⊢ ◡ 𝑟 | 
						
							| 14 | 13 2 | ccom | ⊢ ( ◡ 𝑟  ∘  𝑟 ) | 
						
							| 15 | 12 14 | wss | ⊢ ( ∪  ∪  𝑟  ×  ∪  ∪  𝑟 )  ⊆  ( ◡ 𝑟  ∘  𝑟 ) | 
						
							| 16 | 11 15 | wa | ⊢ ( ( 𝑟  ∘  𝑟 )  ⊆  𝑟  ∧  ( ∪  ∪  𝑟  ×  ∪  ∪  𝑟 )  ⊆  ( ◡ 𝑟  ∘  𝑟 ) ) | 
						
							| 17 | 9 16 | wa | ⊢ ( ( Rel  𝑟  ∧  (  I   ↾  ∪  ∪  𝑟 )  ⊆  𝑟 )  ∧  ( ( 𝑟  ∘  𝑟 )  ⊆  𝑟  ∧  ( ∪  ∪  𝑟  ×  ∪  ∪  𝑟 )  ⊆  ( ◡ 𝑟  ∘  𝑟 ) ) ) | 
						
							| 18 | 17 1 | cab | ⊢ { 𝑟  ∣  ( ( Rel  𝑟  ∧  (  I   ↾  ∪  ∪  𝑟 )  ⊆  𝑟 )  ∧  ( ( 𝑟  ∘  𝑟 )  ⊆  𝑟  ∧  ( ∪  ∪  𝑟  ×  ∪  ∪  𝑟 )  ⊆  ( ◡ 𝑟  ∘  𝑟 ) ) ) } | 
						
							| 19 | 0 18 | wceq | ⊢ DirRel  =  { 𝑟  ∣  ( ( Rel  𝑟  ∧  (  I   ↾  ∪  ∪  𝑟 )  ⊆  𝑟 )  ∧  ( ( 𝑟  ∘  𝑟 )  ⊆  𝑟  ∧  ( ∪  ∪  𝑟  ×  ∪  ∪  𝑟 )  ⊆  ( ◡ 𝑟  ∘  𝑟 ) ) ) } |