Step |
Hyp |
Ref |
Expression |
0 |
|
cdir |
⊢ DirRel |
1 |
|
vr |
⊢ 𝑟 |
2 |
1
|
cv |
⊢ 𝑟 |
3 |
2
|
wrel |
⊢ Rel 𝑟 |
4 |
|
cid |
⊢ I |
5 |
2
|
cuni |
⊢ ∪ 𝑟 |
6 |
5
|
cuni |
⊢ ∪ ∪ 𝑟 |
7 |
4 6
|
cres |
⊢ ( I ↾ ∪ ∪ 𝑟 ) |
8 |
7 2
|
wss |
⊢ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 |
9 |
3 8
|
wa |
⊢ ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) |
10 |
2 2
|
ccom |
⊢ ( 𝑟 ∘ 𝑟 ) |
11 |
10 2
|
wss |
⊢ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 |
12 |
6 6
|
cxp |
⊢ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) |
13 |
2
|
ccnv |
⊢ ◡ 𝑟 |
14 |
13 2
|
ccom |
⊢ ( ◡ 𝑟 ∘ 𝑟 ) |
15 |
12 14
|
wss |
⊢ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) |
16 |
11 15
|
wa |
⊢ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) |
17 |
9 16
|
wa |
⊢ ( ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) ) |
18 |
17 1
|
cab |
⊢ { 𝑟 ∣ ( ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) ) } |
19 |
0 18
|
wceq |
⊢ DirRel = { 𝑟 ∣ ( ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) ) } |