| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdir |
⊢ DirRel |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
1
|
cv |
⊢ 𝑟 |
| 3 |
2
|
wrel |
⊢ Rel 𝑟 |
| 4 |
|
cid |
⊢ I |
| 5 |
2
|
cuni |
⊢ ∪ 𝑟 |
| 6 |
5
|
cuni |
⊢ ∪ ∪ 𝑟 |
| 7 |
4 6
|
cres |
⊢ ( I ↾ ∪ ∪ 𝑟 ) |
| 8 |
7 2
|
wss |
⊢ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 |
| 9 |
3 8
|
wa |
⊢ ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) |
| 10 |
2 2
|
ccom |
⊢ ( 𝑟 ∘ 𝑟 ) |
| 11 |
10 2
|
wss |
⊢ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 |
| 12 |
6 6
|
cxp |
⊢ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) |
| 13 |
2
|
ccnv |
⊢ ◡ 𝑟 |
| 14 |
13 2
|
ccom |
⊢ ( ◡ 𝑟 ∘ 𝑟 ) |
| 15 |
12 14
|
wss |
⊢ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) |
| 16 |
11 15
|
wa |
⊢ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) |
| 17 |
9 16
|
wa |
⊢ ( ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) ) |
| 18 |
17 1
|
cab |
⊢ { 𝑟 ∣ ( ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) ) } |
| 19 |
0 18
|
wceq |
⊢ DirRel = { 𝑟 ∣ ( ( Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟 ) ⊆ 𝑟 ) ∧ ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( ∪ ∪ 𝑟 × ∪ ∪ 𝑟 ) ⊆ ( ◡ 𝑟 ∘ 𝑟 ) ) ) } |