| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldir |  |-  ( R e. DirRel -> Rel R ) | 
						
							| 2 |  | brrelex1 |  |-  ( ( Rel R /\ A R B ) -> A e. _V ) | 
						
							| 3 | 2 | ex |  |-  ( Rel R -> ( A R B -> A e. _V ) ) | 
						
							| 4 |  | brrelex1 |  |-  ( ( Rel R /\ B R C ) -> B e. _V ) | 
						
							| 5 | 4 | ex |  |-  ( Rel R -> ( B R C -> B e. _V ) ) | 
						
							| 6 | 3 5 | anim12d |  |-  ( Rel R -> ( ( A R B /\ B R C ) -> ( A e. _V /\ B e. _V ) ) ) | 
						
							| 7 | 1 6 | syl |  |-  ( R e. DirRel -> ( ( A R B /\ B R C ) -> ( A e. _V /\ B e. _V ) ) ) | 
						
							| 8 |  | eqid |  |-  U. U. R = U. U. R | 
						
							| 9 | 8 | isdir |  |-  ( R e. DirRel -> ( R e. DirRel <-> ( ( Rel R /\ ( _I |` U. U. R ) C_ R ) /\ ( ( R o. R ) C_ R /\ ( U. U. R X. U. U. R ) C_ ( `' R o. R ) ) ) ) ) | 
						
							| 10 | 9 | ibi |  |-  ( R e. DirRel -> ( ( Rel R /\ ( _I |` U. U. R ) C_ R ) /\ ( ( R o. R ) C_ R /\ ( U. U. R X. U. U. R ) C_ ( `' R o. R ) ) ) ) | 
						
							| 11 | 10 | simprld |  |-  ( R e. DirRel -> ( R o. R ) C_ R ) | 
						
							| 12 |  | cotr |  |-  ( ( R o. R ) C_ R <-> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) | 
						
							| 13 | 11 12 | sylib |  |-  ( R e. DirRel -> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) | 
						
							| 14 |  | breq12 |  |-  ( ( x = A /\ y = B ) -> ( x R y <-> A R B ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( x R y <-> A R B ) ) | 
						
							| 16 |  | breq12 |  |-  ( ( y = B /\ z = C ) -> ( y R z <-> B R C ) ) | 
						
							| 17 | 16 | 3adant1 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( y R z <-> B R C ) ) | 
						
							| 18 | 15 17 | anbi12d |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( x R y /\ y R z ) <-> ( A R B /\ B R C ) ) ) | 
						
							| 19 |  | breq12 |  |-  ( ( x = A /\ z = C ) -> ( x R z <-> A R C ) ) | 
						
							| 20 | 19 | 3adant2 |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( x R z <-> A R C ) ) | 
						
							| 21 | 18 20 | imbi12d |  |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( A R B /\ B R C ) -> A R C ) ) ) | 
						
							| 22 | 21 | spc3gv |  |-  ( ( A e. _V /\ B e. _V /\ C e. V ) -> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> ( ( A R B /\ B R C ) -> A R C ) ) ) | 
						
							| 23 | 13 22 | syl5 |  |-  ( ( A e. _V /\ B e. _V /\ C e. V ) -> ( R e. DirRel -> ( ( A R B /\ B R C ) -> A R C ) ) ) | 
						
							| 24 | 23 | 3expia |  |-  ( ( A e. _V /\ B e. _V ) -> ( C e. V -> ( R e. DirRel -> ( ( A R B /\ B R C ) -> A R C ) ) ) ) | 
						
							| 25 | 24 | com4t |  |-  ( R e. DirRel -> ( ( A R B /\ B R C ) -> ( ( A e. _V /\ B e. _V ) -> ( C e. V -> A R C ) ) ) ) | 
						
							| 26 | 7 25 | mpdd |  |-  ( R e. DirRel -> ( ( A R B /\ B R C ) -> ( C e. V -> A R C ) ) ) | 
						
							| 27 | 26 | imp31 |  |-  ( ( ( R e. DirRel /\ ( A R B /\ B R C ) ) /\ C e. V ) -> A R C ) | 
						
							| 28 | 27 | an32s |  |-  ( ( ( R e. DirRel /\ C e. V ) /\ ( A R B /\ B R C ) ) -> A R C ) |