Metamath Proof Explorer


Theorem dirref

Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis dirref.1 X=domR
Assertion dirref RDirRelAXARA

Proof

Step Hyp Ref Expression
1 dirref.1 X=domR
2 dirdm RDirReldomR=R
3 1 2 eqtrid RDirRelX=R
4 3 reseq2d RDirRelIX=IR
5 eqid R=R
6 5 isdir RDirRelRDirRelRelRIRRRRRR×RR-1R
7 6 ibi RDirRelRelRIRRRRRR×RR-1R
8 7 simplrd RDirRelIRR
9 4 8 eqsstrd RDirRelIXR
10 9 ssbrd RDirRelAIXAARA
11 eqid A=A
12 resieq AXAXAIXAA=A
13 12 anidms AXAIXAA=A
14 11 13 mpbiri AXAIXA
15 10 14 impel RDirRelAXARA