Metamath Proof Explorer


Theorem tailval

Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1 𝑋 = dom 𝐷
Assertion tailval ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 tailfval.1 𝑋 = dom 𝐷
2 1 tailfval ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) )
3 2 fveq1d ( 𝐷 ∈ DirRel → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) )
4 3 adantr ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) )
5 id ( 𝐴𝑋𝐴𝑋 )
6 imaexg ( 𝐷 ∈ DirRel → ( 𝐷 “ { 𝐴 } ) ∈ V )
7 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
8 7 imaeq2d ( 𝑥 = 𝐴 → ( 𝐷 “ { 𝑥 } ) = ( 𝐷 “ { 𝐴 } ) )
9 eqid ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) = ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) )
10 8 9 fvmptg ( ( 𝐴𝑋 ∧ ( 𝐷 “ { 𝐴 } ) ∈ V ) → ( ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) )
11 5 6 10 syl2anr ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → ( ( 𝑥𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) )
12 4 11 eqtrd ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) )