Step |
Hyp |
Ref |
Expression |
1 |
|
tailfval.1 |
⊢ 𝑋 = dom 𝐷 |
2 |
1
|
tailfval |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝐷 ∈ DirRel → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) ) |
5 |
|
id |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) |
6 |
|
imaexg |
⊢ ( 𝐷 ∈ DirRel → ( 𝐷 “ { 𝐴 } ) ∈ V ) |
7 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
8 |
7
|
imaeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐷 “ { 𝑥 } ) = ( 𝐷 “ { 𝐴 } ) ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) |
10 |
8 9
|
fvmptg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐷 “ { 𝐴 } ) ∈ V ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) ) |
11 |
5 6 10
|
syl2anr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) ) |
12 |
4 11
|
eqtrd |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) ) |