| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tailfval.1 |
⊢ 𝑋 = dom 𝐷 |
| 2 |
1
|
tailfval |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ) |
| 3 |
2
|
fveq1d |
⊢ ( 𝐷 ∈ DirRel → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) ) |
| 5 |
|
id |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) |
| 6 |
|
imaexg |
⊢ ( 𝐷 ∈ DirRel → ( 𝐷 “ { 𝐴 } ) ∈ V ) |
| 7 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
| 8 |
7
|
imaeq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐷 “ { 𝑥 } ) = ( 𝐷 “ { 𝐴 } ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) |
| 10 |
8 9
|
fvmptg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐷 “ { 𝐴 } ) ∈ V ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) ) |
| 11 |
5 6 10
|
syl2anr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐷 “ { 𝑥 } ) ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) ) |
| 12 |
4 11
|
eqtrd |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) ) |