Metamath Proof Explorer


Theorem tailval

Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1
|- X = dom D
Assertion tailval
|- ( ( D e. DirRel /\ A e. X ) -> ( ( tail ` D ) ` A ) = ( D " { A } ) )

Proof

Step Hyp Ref Expression
1 tailfval.1
 |-  X = dom D
2 1 tailfval
 |-  ( D e. DirRel -> ( tail ` D ) = ( x e. X |-> ( D " { x } ) ) )
3 2 fveq1d
 |-  ( D e. DirRel -> ( ( tail ` D ) ` A ) = ( ( x e. X |-> ( D " { x } ) ) ` A ) )
4 3 adantr
 |-  ( ( D e. DirRel /\ A e. X ) -> ( ( tail ` D ) ` A ) = ( ( x e. X |-> ( D " { x } ) ) ` A ) )
5 id
 |-  ( A e. X -> A e. X )
6 imaexg
 |-  ( D e. DirRel -> ( D " { A } ) e. _V )
7 sneq
 |-  ( x = A -> { x } = { A } )
8 7 imaeq2d
 |-  ( x = A -> ( D " { x } ) = ( D " { A } ) )
9 eqid
 |-  ( x e. X |-> ( D " { x } ) ) = ( x e. X |-> ( D " { x } ) )
10 8 9 fvmptg
 |-  ( ( A e. X /\ ( D " { A } ) e. _V ) -> ( ( x e. X |-> ( D " { x } ) ) ` A ) = ( D " { A } ) )
11 5 6 10 syl2anr
 |-  ( ( D e. DirRel /\ A e. X ) -> ( ( x e. X |-> ( D " { x } ) ) ` A ) = ( D " { A } ) )
12 4 11 eqtrd
 |-  ( ( D e. DirRel /\ A e. X ) -> ( ( tail ` D ) ` A ) = ( D " { A } ) )