Step |
Hyp |
Ref |
Expression |
1 |
|
tailfval.1 |
|- X = dom D |
2 |
1
|
tailfval |
|- ( D e. DirRel -> ( tail ` D ) = ( x e. X |-> ( D " { x } ) ) ) |
3 |
2
|
fveq1d |
|- ( D e. DirRel -> ( ( tail ` D ) ` A ) = ( ( x e. X |-> ( D " { x } ) ) ` A ) ) |
4 |
3
|
adantr |
|- ( ( D e. DirRel /\ A e. X ) -> ( ( tail ` D ) ` A ) = ( ( x e. X |-> ( D " { x } ) ) ` A ) ) |
5 |
|
id |
|- ( A e. X -> A e. X ) |
6 |
|
imaexg |
|- ( D e. DirRel -> ( D " { A } ) e. _V ) |
7 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
8 |
7
|
imaeq2d |
|- ( x = A -> ( D " { x } ) = ( D " { A } ) ) |
9 |
|
eqid |
|- ( x e. X |-> ( D " { x } ) ) = ( x e. X |-> ( D " { x } ) ) |
10 |
8 9
|
fvmptg |
|- ( ( A e. X /\ ( D " { A } ) e. _V ) -> ( ( x e. X |-> ( D " { x } ) ) ` A ) = ( D " { A } ) ) |
11 |
5 6 10
|
syl2anr |
|- ( ( D e. DirRel /\ A e. X ) -> ( ( x e. X |-> ( D " { x } ) ) ` A ) = ( D " { A } ) ) |
12 |
4 11
|
eqtrd |
|- ( ( D e. DirRel /\ A e. X ) -> ( ( tail ` D ) ` A ) = ( D " { A } ) ) |