Step |
Hyp |
Ref |
Expression |
1 |
|
tailfval.1 |
|- X = dom D |
2 |
1
|
tailval |
|- ( ( D e. DirRel /\ A e. X ) -> ( ( tail ` D ) ` A ) = ( D " { A } ) ) |
3 |
2
|
eleq2d |
|- ( ( D e. DirRel /\ A e. X ) -> ( B e. ( ( tail ` D ) ` A ) <-> B e. ( D " { A } ) ) ) |
4 |
3
|
3adant3 |
|- ( ( D e. DirRel /\ A e. X /\ B e. C ) -> ( B e. ( ( tail ` D ) ` A ) <-> B e. ( D " { A } ) ) ) |
5 |
|
elimasng |
|- ( ( A e. X /\ B e. C ) -> ( B e. ( D " { A } ) <-> <. A , B >. e. D ) ) |
6 |
|
df-br |
|- ( A D B <-> <. A , B >. e. D ) |
7 |
5 6
|
bitr4di |
|- ( ( A e. X /\ B e. C ) -> ( B e. ( D " { A } ) <-> A D B ) ) |
8 |
7
|
3adant1 |
|- ( ( D e. DirRel /\ A e. X /\ B e. C ) -> ( B e. ( D " { A } ) <-> A D B ) ) |
9 |
4 8
|
bitrd |
|- ( ( D e. DirRel /\ A e. X /\ B e. C ) -> ( B e. ( ( tail ` D ) ` A ) <-> A D B ) ) |