Metamath Proof Explorer


Theorem eltail

Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1
|- X = dom D
Assertion eltail
|- ( ( D e. DirRel /\ A e. X /\ B e. C ) -> ( B e. ( ( tail ` D ) ` A ) <-> A D B ) )

Proof

Step Hyp Ref Expression
1 tailfval.1
 |-  X = dom D
2 1 tailval
 |-  ( ( D e. DirRel /\ A e. X ) -> ( ( tail ` D ) ` A ) = ( D " { A } ) )
3 2 eleq2d
 |-  ( ( D e. DirRel /\ A e. X ) -> ( B e. ( ( tail ` D ) ` A ) <-> B e. ( D " { A } ) ) )
4 3 3adant3
 |-  ( ( D e. DirRel /\ A e. X /\ B e. C ) -> ( B e. ( ( tail ` D ) ` A ) <-> B e. ( D " { A } ) ) )
5 elimasng
 |-  ( ( A e. X /\ B e. C ) -> ( B e. ( D " { A } ) <-> <. A , B >. e. D ) )
6 df-br
 |-  ( A D B <-> <. A , B >. e. D )
7 5 6 bitr4di
 |-  ( ( A e. X /\ B e. C ) -> ( B e. ( D " { A } ) <-> A D B ) )
8 7 3adant1
 |-  ( ( D e. DirRel /\ A e. X /\ B e. C ) -> ( B e. ( D " { A } ) <-> A D B ) )
9 4 8 bitrd
 |-  ( ( D e. DirRel /\ A e. X /\ B e. C ) -> ( B e. ( ( tail ` D ) ` A ) <-> A D B ) )