Metamath Proof Explorer


Theorem eltail

Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1 X=domD
Assertion eltail DDirRelAXBCBtailDAADB

Proof

Step Hyp Ref Expression
1 tailfval.1 X=domD
2 1 tailval DDirRelAXtailDA=DA
3 2 eleq2d DDirRelAXBtailDABDA
4 3 3adant3 DDirRelAXBCBtailDABDA
5 elimasng AXBCBDAABD
6 df-br ADBABD
7 5 6 bitr4di AXBCBDAADB
8 7 3adant1 DDirRelAXBCBDAADB
9 4 8 bitrd DDirRelAXBCBtailDAADB