Metamath Proof Explorer


Theorem tailf

Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailf.1 X=domD
Assertion tailf DDirReltailD:X𝒫X

Proof

Step Hyp Ref Expression
1 tailf.1 X=domD
2 imassrn DxranD
3 ssun2 ranDdomDranD
4 dmrnssfld domDranDD
5 3 4 sstri ranDD
6 2 5 sstri DxD
7 dirdm DDirReldomD=D
8 1 7 eqtr2id DDirRelD=X
9 6 8 sseqtrid DDirRelDxX
10 dmexg DDirReldomDV
11 1 10 eqeltrid DDirRelXV
12 elpw2g XVDx𝒫XDxX
13 11 12 syl DDirRelDx𝒫XDxX
14 9 13 mpbird DDirRelDx𝒫X
15 14 ralrimivw DDirRelxXDx𝒫X
16 eqid xXDx=xXDx
17 16 fmpt xXDx𝒫XxXDx:X𝒫X
18 15 17 sylib DDirRelxXDx:X𝒫X
19 1 tailfval DDirReltailD=xXDx
20 19 feq1d DDirReltailD:X𝒫XxXDx:X𝒫X
21 18 20 mpbird DDirReltailD:X𝒫X