Metamath Proof Explorer


Theorem tailf

Description: The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailf.1 X = dom D
Assertion tailf D DirRel tail D : X 𝒫 X

Proof

Step Hyp Ref Expression
1 tailf.1 X = dom D
2 imassrn D x ran D
3 ssun2 ran D dom D ran D
4 dmrnssfld dom D ran D D
5 3 4 sstri ran D D
6 2 5 sstri D x D
7 dirdm D DirRel dom D = D
8 1 7 eqtr2id D DirRel D = X
9 6 8 sseqtrid D DirRel D x X
10 dmexg D DirRel dom D V
11 1 10 eqeltrid D DirRel X V
12 elpw2g X V D x 𝒫 X D x X
13 11 12 syl D DirRel D x 𝒫 X D x X
14 9 13 mpbird D DirRel D x 𝒫 X
15 14 ralrimivw D DirRel x X D x 𝒫 X
16 eqid x X D x = x X D x
17 16 fmpt x X D x 𝒫 X x X D x : X 𝒫 X
18 15 17 sylib D DirRel x X D x : X 𝒫 X
19 1 tailfval D DirRel tail D = x X D x
20 19 feq1d D DirRel tail D : X 𝒫 X x X D x : X 𝒫 X
21 18 20 mpbird D DirRel tail D : X 𝒫 X