Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Hankins
Directed sets, nets
tailini
Next ⟩
tailfb
Metamath Proof Explorer
Ascii
Unicode
Theorem
tailini
Description:
A tail contains its initial element.
(Contributed by
Jeff Hankins
, 25-Nov-2009)
Ref
Expression
Hypothesis
tailini.1
⊢
X
=
dom
⁡
D
Assertion
tailini
⊢
D
∈
DirRel
∧
A
∈
X
→
A
∈
tail
⁡
D
⁡
A
Proof
Step
Hyp
Ref
Expression
1
tailini.1
⊢
X
=
dom
⁡
D
2
1
dirref
⊢
D
∈
DirRel
∧
A
∈
X
→
A
D
A
3
1
eltail
⊢
D
∈
DirRel
∧
A
∈
X
∧
A
∈
X
→
A
∈
tail
⁡
D
⁡
A
↔
A
D
A
4
3
3anidm23
⊢
D
∈
DirRel
∧
A
∈
X
→
A
∈
tail
⁡
D
⁡
A
↔
A
D
A
5
2
4
mpbird
⊢
D
∈
DirRel
∧
A
∈
X
→
A
∈
tail
⁡
D
⁡
A