Metamath Proof Explorer


Theorem tailini

Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Hypothesis tailini.1 𝑋 = dom 𝐷
Assertion tailini ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 tailini.1 𝑋 = dom 𝐷
2 1 dirref ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → 𝐴 𝐷 𝐴 )
3 1 eltail ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋𝐴𝑋 ) → ( 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐴 𝐷 𝐴 ) )
4 3 3anidm23 ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → ( 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐴 𝐷 𝐴 ) )
5 2 4 mpbird ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) )