Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tailini.1 | ⊢ 𝑋 = dom 𝐷 | |
Assertion | tailini | ⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tailini.1 | ⊢ 𝑋 = dom 𝐷 | |
2 | 1 | dirref | ⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → 𝐴 𝐷 𝐴 ) |
3 | 1 | eltail | ⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐴 𝐷 𝐴 ) ) |
4 | 3 | 3anidm23 | ⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐴 𝐷 𝐴 ) ) |
5 | 2 4 | mpbird | ⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ) |