| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tailfb.1 |
⊢ 𝑋 = dom 𝐷 |
| 2 |
1
|
tailf |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 3 |
2
|
frnd |
⊢ ( 𝐷 ∈ DirRel → ran ( tail ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ran ( tail ‘ 𝐷 ) ⊆ 𝒫 𝑋 ) |
| 5 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑋 ) |
| 6 |
|
ffn |
⊢ ( ( tail ‘ 𝐷 ) : 𝑋 ⟶ 𝒫 𝑋 → ( tail ‘ 𝐷 ) Fn 𝑋 ) |
| 7 |
|
fnfvelrn |
⊢ ( ( ( tail ‘ 𝐷 ) Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) ∈ ran ( tail ‘ 𝐷 ) ) |
| 8 |
7
|
ex |
⊢ ( ( tail ‘ 𝐷 ) Fn 𝑋 → ( 𝑥 ∈ 𝑋 → ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) ∈ ran ( tail ‘ 𝐷 ) ) ) |
| 9 |
2 6 8
|
3syl |
⊢ ( 𝐷 ∈ DirRel → ( 𝑥 ∈ 𝑋 → ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) ∈ ran ( tail ‘ 𝐷 ) ) ) |
| 10 |
|
ne0i |
⊢ ( ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) ∈ ran ( tail ‘ 𝐷 ) → ran ( tail ‘ 𝐷 ) ≠ ∅ ) |
| 11 |
9 10
|
syl6 |
⊢ ( 𝐷 ∈ DirRel → ( 𝑥 ∈ 𝑋 → ran ( tail ‘ 𝐷 ) ≠ ∅ ) ) |
| 12 |
11
|
exlimdv |
⊢ ( 𝐷 ∈ DirRel → ( ∃ 𝑥 𝑥 ∈ 𝑋 → ran ( tail ‘ 𝐷 ) ≠ ∅ ) ) |
| 13 |
5 12
|
biimtrid |
⊢ ( 𝐷 ∈ DirRel → ( 𝑋 ≠ ∅ → ran ( tail ‘ 𝐷 ) ≠ ∅ ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ran ( tail ‘ 𝐷 ) ≠ ∅ ) |
| 15 |
1
|
tailini |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) ) |
| 16 |
|
n0i |
⊢ ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) → ¬ ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) = ∅ ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑥 ∈ 𝑋 ) → ¬ ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) = ∅ ) |
| 18 |
17
|
nrexdv |
⊢ ( 𝐷 ∈ DirRel → ¬ ∃ 𝑥 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) = ∅ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ¬ ∃ 𝑥 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) = ∅ ) |
| 20 |
|
fvelrnb |
⊢ ( ( tail ‘ 𝐷 ) Fn 𝑋 → ( ∅ ∈ ran ( tail ‘ 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) = ∅ ) ) |
| 21 |
2 6 20
|
3syl |
⊢ ( 𝐷 ∈ DirRel → ( ∅ ∈ ran ( tail ‘ 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) = ∅ ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ( ∅ ∈ ran ( tail ‘ 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑥 ) = ∅ ) ) |
| 23 |
19 22
|
mtbird |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ¬ ∅ ∈ ran ( tail ‘ 𝐷 ) ) |
| 24 |
|
df-nel |
⊢ ( ∅ ∉ ran ( tail ‘ 𝐷 ) ↔ ¬ ∅ ∈ ran ( tail ‘ 𝐷 ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ∅ ∉ ran ( tail ‘ 𝐷 ) ) |
| 26 |
|
fvelrnb |
⊢ ( ( tail ‘ 𝐷 ) Fn 𝑋 → ( 𝑥 ∈ ran ( tail ‘ 𝐷 ) ↔ ∃ 𝑢 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ) ) |
| 27 |
|
fvelrnb |
⊢ ( ( tail ‘ 𝐷 ) Fn 𝑋 → ( 𝑦 ∈ ran ( tail ‘ 𝐷 ) ↔ ∃ 𝑣 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) ) |
| 28 |
26 27
|
anbi12d |
⊢ ( ( tail ‘ 𝐷 ) Fn 𝑋 → ( ( 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∧ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ) ↔ ( ∃ 𝑢 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ∃ 𝑣 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) ) ) |
| 29 |
2 6 28
|
3syl |
⊢ ( 𝐷 ∈ DirRel → ( ( 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∧ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ) ↔ ( ∃ 𝑢 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ∃ 𝑣 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) ) ) |
| 30 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ 𝑋 ∃ 𝑣 ∈ 𝑋 ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) ↔ ( ∃ 𝑢 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ∃ 𝑣 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) ) |
| 31 |
1
|
dirge |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) |
| 32 |
31
|
3expb |
⊢ ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ∃ 𝑤 ∈ 𝑋 ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) |
| 33 |
2 6
|
syl |
⊢ ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) Fn 𝑋 ) |
| 34 |
|
fnfvelrn |
⊢ ( ( ( tail ‘ 𝐷 ) Fn 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ∈ ran ( tail ‘ 𝐷 ) ) |
| 35 |
33 34
|
sylan |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑤 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ∈ ran ( tail ‘ 𝐷 ) ) |
| 36 |
35
|
ad2ant2r |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ∈ ran ( tail ‘ 𝐷 ) ) |
| 37 |
|
dirtr |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ 𝑥 ∈ V ) ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑤 𝐷 𝑥 ) ) → 𝑢 𝐷 𝑥 ) |
| 38 |
37
|
exp32 |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑥 ∈ V ) → ( 𝑢 𝐷 𝑤 → ( 𝑤 𝐷 𝑥 → 𝑢 𝐷 𝑥 ) ) ) |
| 39 |
38
|
elvd |
⊢ ( 𝐷 ∈ DirRel → ( 𝑢 𝐷 𝑤 → ( 𝑤 𝐷 𝑥 → 𝑢 𝐷 𝑥 ) ) ) |
| 40 |
39
|
com23 |
⊢ ( 𝐷 ∈ DirRel → ( 𝑤 𝐷 𝑥 → ( 𝑢 𝐷 𝑤 → 𝑢 𝐷 𝑥 ) ) ) |
| 41 |
40
|
imp |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑤 𝐷 𝑥 ) → ( 𝑢 𝐷 𝑤 → 𝑢 𝐷 𝑥 ) ) |
| 42 |
41
|
ad2ant2rl |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑤 𝐷 𝑥 ) ) → ( 𝑢 𝐷 𝑤 → 𝑢 𝐷 𝑥 ) ) |
| 43 |
|
dirtr |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ 𝑥 ∈ V ) ∧ ( 𝑣 𝐷 𝑤 ∧ 𝑤 𝐷 𝑥 ) ) → 𝑣 𝐷 𝑥 ) |
| 44 |
43
|
exp32 |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑥 ∈ V ) → ( 𝑣 𝐷 𝑤 → ( 𝑤 𝐷 𝑥 → 𝑣 𝐷 𝑥 ) ) ) |
| 45 |
44
|
elvd |
⊢ ( 𝐷 ∈ DirRel → ( 𝑣 𝐷 𝑤 → ( 𝑤 𝐷 𝑥 → 𝑣 𝐷 𝑥 ) ) ) |
| 46 |
45
|
com23 |
⊢ ( 𝐷 ∈ DirRel → ( 𝑤 𝐷 𝑥 → ( 𝑣 𝐷 𝑤 → 𝑣 𝐷 𝑥 ) ) ) |
| 47 |
46
|
imp |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑤 𝐷 𝑥 ) → ( 𝑣 𝐷 𝑤 → 𝑣 𝐷 𝑥 ) ) |
| 48 |
47
|
ad2ant2rl |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑤 𝐷 𝑥 ) ) → ( 𝑣 𝐷 𝑤 → 𝑣 𝐷 𝑥 ) ) |
| 49 |
42 48
|
anim12d |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑤 𝐷 𝑥 ) ) → ( ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) → ( 𝑢 𝐷 𝑥 ∧ 𝑣 𝐷 𝑥 ) ) ) |
| 50 |
49
|
expr |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 𝐷 𝑥 → ( ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) → ( 𝑢 𝐷 𝑥 ∧ 𝑣 𝐷 𝑥 ) ) ) ) |
| 51 |
50
|
com23 |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) → ( 𝑤 𝐷 𝑥 → ( 𝑢 𝐷 𝑥 ∧ 𝑣 𝐷 𝑥 ) ) ) ) |
| 52 |
51
|
impr |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ( 𝑤 𝐷 𝑥 → ( 𝑢 𝐷 𝑥 ∧ 𝑣 𝐷 𝑥 ) ) ) |
| 53 |
|
vex |
⊢ 𝑥 ∈ V |
| 54 |
1
|
eltail |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑤 ∈ 𝑋 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ↔ 𝑤 𝐷 𝑥 ) ) |
| 55 |
53 54
|
mp3an3 |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑤 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ↔ 𝑤 𝐷 𝑥 ) ) |
| 56 |
55
|
ad2ant2r |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ↔ 𝑤 𝐷 𝑥 ) ) |
| 57 |
1
|
eltail |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑢 ∈ 𝑋 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ↔ 𝑢 𝐷 𝑥 ) ) |
| 58 |
53 57
|
mp3an3 |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑢 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ↔ 𝑢 𝐷 𝑥 ) ) |
| 59 |
58
|
adantrr |
⊢ ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ↔ 𝑢 𝐷 𝑥 ) ) |
| 60 |
1
|
eltail |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑣 ∈ 𝑋 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ↔ 𝑣 𝐷 𝑥 ) ) |
| 61 |
53 60
|
mp3an3 |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑣 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ↔ 𝑣 𝐷 𝑥 ) ) |
| 62 |
61
|
adantrl |
⊢ ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ↔ 𝑣 𝐷 𝑥 ) ) |
| 63 |
59 62
|
anbi12d |
⊢ ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∧ 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ ( 𝑢 𝐷 𝑥 ∧ 𝑣 𝐷 𝑥 ) ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ( ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∧ 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ ( 𝑢 𝐷 𝑥 ∧ 𝑣 𝐷 𝑥 ) ) ) |
| 65 |
52 56 64
|
3imtr4d |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∧ 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) ) |
| 66 |
|
elin |
⊢ ( 𝑥 ∈ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∧ 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) |
| 67 |
65 66
|
imbitrrdi |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ( 𝑥 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) → 𝑥 ∈ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) ) |
| 68 |
67
|
ssrdv |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) |
| 69 |
|
sseq1 |
⊢ ( 𝑧 = ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) → ( 𝑧 ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) ) |
| 70 |
69
|
rspcev |
⊢ ( ( ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ∈ ran ( tail ‘ 𝐷 ) ∧ ( ( tail ‘ 𝐷 ) ‘ 𝑤 ) ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) |
| 71 |
36 68 70
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑢 𝐷 𝑤 ∧ 𝑣 𝐷 𝑤 ) ) ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) |
| 72 |
32 71
|
rexlimddv |
⊢ ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) |
| 73 |
|
ineq1 |
⊢ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 → ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) = ( 𝑥 ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) |
| 74 |
73
|
sseq2d |
⊢ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 → ( 𝑧 ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ 𝑧 ⊆ ( 𝑥 ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) ) |
| 75 |
74
|
rexbidv |
⊢ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 → ( ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ) ) |
| 76 |
|
ineq2 |
⊢ ( ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 → ( 𝑥 ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) = ( 𝑥 ∩ 𝑦 ) ) |
| 77 |
76
|
sseq2d |
⊢ ( ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 → ( 𝑧 ⊆ ( 𝑥 ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 78 |
77
|
rexbidv |
⊢ ( ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 → ( ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 79 |
75 78
|
sylan9bb |
⊢ ( ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) → ( ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) ∩ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) ) ↔ ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 80 |
72 79
|
syl5ibcom |
⊢ ( ( 𝐷 ∈ DirRel ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ) ) → ( ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 81 |
80
|
rexlimdvva |
⊢ ( 𝐷 ∈ DirRel → ( ∃ 𝑢 ∈ 𝑋 ∃ 𝑣 ∈ 𝑋 ( ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 82 |
30 81
|
biimtrrid |
⊢ ( 𝐷 ∈ DirRel → ( ( ∃ 𝑢 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑢 ) = 𝑥 ∧ ∃ 𝑣 ∈ 𝑋 ( ( tail ‘ 𝐷 ) ‘ 𝑣 ) = 𝑦 ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 83 |
29 82
|
sylbid |
⊢ ( 𝐷 ∈ DirRel → ( ( 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∧ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ( ( 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∧ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ) → ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 85 |
84
|
ralrimivv |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ∀ 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∀ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 86 |
14 25 85
|
3jca |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ( ran ( tail ‘ 𝐷 ) ≠ ∅ ∧ ∅ ∉ ran ( tail ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∀ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 87 |
|
dmexg |
⊢ ( 𝐷 ∈ DirRel → dom 𝐷 ∈ V ) |
| 88 |
1 87
|
eqeltrid |
⊢ ( 𝐷 ∈ DirRel → 𝑋 ∈ V ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → 𝑋 ∈ V ) |
| 90 |
|
isfbas2 |
⊢ ( 𝑋 ∈ V → ( ran ( tail ‘ 𝐷 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ran ( tail ‘ 𝐷 ) ⊆ 𝒫 𝑋 ∧ ( ran ( tail ‘ 𝐷 ) ≠ ∅ ∧ ∅ ∉ ran ( tail ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∀ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 91 |
89 90
|
syl |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ( ran ( tail ‘ 𝐷 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ran ( tail ‘ 𝐷 ) ⊆ 𝒫 𝑋 ∧ ( ran ( tail ‘ 𝐷 ) ≠ ∅ ∧ ∅ ∉ ran ( tail ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ ran ( tail ‘ 𝐷 ) ∀ 𝑦 ∈ ran ( tail ‘ 𝐷 ) ∃ 𝑧 ∈ ran ( tail ‘ 𝐷 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 92 |
4 86 91
|
mpbir2and |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝑋 ≠ ∅ ) → ran ( tail ‘ 𝐷 ) ∈ ( fBas ‘ 𝑋 ) ) |