| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tailfb.1 |
|- X = dom D |
| 2 |
1
|
tailf |
|- ( D e. DirRel -> ( tail ` D ) : X --> ~P X ) |
| 3 |
2
|
frnd |
|- ( D e. DirRel -> ran ( tail ` D ) C_ ~P X ) |
| 4 |
3
|
adantr |
|- ( ( D e. DirRel /\ X =/= (/) ) -> ran ( tail ` D ) C_ ~P X ) |
| 5 |
|
n0 |
|- ( X =/= (/) <-> E. x x e. X ) |
| 6 |
|
ffn |
|- ( ( tail ` D ) : X --> ~P X -> ( tail ` D ) Fn X ) |
| 7 |
|
fnfvelrn |
|- ( ( ( tail ` D ) Fn X /\ x e. X ) -> ( ( tail ` D ) ` x ) e. ran ( tail ` D ) ) |
| 8 |
7
|
ex |
|- ( ( tail ` D ) Fn X -> ( x e. X -> ( ( tail ` D ) ` x ) e. ran ( tail ` D ) ) ) |
| 9 |
2 6 8
|
3syl |
|- ( D e. DirRel -> ( x e. X -> ( ( tail ` D ) ` x ) e. ran ( tail ` D ) ) ) |
| 10 |
|
ne0i |
|- ( ( ( tail ` D ) ` x ) e. ran ( tail ` D ) -> ran ( tail ` D ) =/= (/) ) |
| 11 |
9 10
|
syl6 |
|- ( D e. DirRel -> ( x e. X -> ran ( tail ` D ) =/= (/) ) ) |
| 12 |
11
|
exlimdv |
|- ( D e. DirRel -> ( E. x x e. X -> ran ( tail ` D ) =/= (/) ) ) |
| 13 |
5 12
|
biimtrid |
|- ( D e. DirRel -> ( X =/= (/) -> ran ( tail ` D ) =/= (/) ) ) |
| 14 |
13
|
imp |
|- ( ( D e. DirRel /\ X =/= (/) ) -> ran ( tail ` D ) =/= (/) ) |
| 15 |
1
|
tailini |
|- ( ( D e. DirRel /\ x e. X ) -> x e. ( ( tail ` D ) ` x ) ) |
| 16 |
|
n0i |
|- ( x e. ( ( tail ` D ) ` x ) -> -. ( ( tail ` D ) ` x ) = (/) ) |
| 17 |
15 16
|
syl |
|- ( ( D e. DirRel /\ x e. X ) -> -. ( ( tail ` D ) ` x ) = (/) ) |
| 18 |
17
|
nrexdv |
|- ( D e. DirRel -> -. E. x e. X ( ( tail ` D ) ` x ) = (/) ) |
| 19 |
18
|
adantr |
|- ( ( D e. DirRel /\ X =/= (/) ) -> -. E. x e. X ( ( tail ` D ) ` x ) = (/) ) |
| 20 |
|
fvelrnb |
|- ( ( tail ` D ) Fn X -> ( (/) e. ran ( tail ` D ) <-> E. x e. X ( ( tail ` D ) ` x ) = (/) ) ) |
| 21 |
2 6 20
|
3syl |
|- ( D e. DirRel -> ( (/) e. ran ( tail ` D ) <-> E. x e. X ( ( tail ` D ) ` x ) = (/) ) ) |
| 22 |
21
|
adantr |
|- ( ( D e. DirRel /\ X =/= (/) ) -> ( (/) e. ran ( tail ` D ) <-> E. x e. X ( ( tail ` D ) ` x ) = (/) ) ) |
| 23 |
19 22
|
mtbird |
|- ( ( D e. DirRel /\ X =/= (/) ) -> -. (/) e. ran ( tail ` D ) ) |
| 24 |
|
df-nel |
|- ( (/) e/ ran ( tail ` D ) <-> -. (/) e. ran ( tail ` D ) ) |
| 25 |
23 24
|
sylibr |
|- ( ( D e. DirRel /\ X =/= (/) ) -> (/) e/ ran ( tail ` D ) ) |
| 26 |
|
fvelrnb |
|- ( ( tail ` D ) Fn X -> ( x e. ran ( tail ` D ) <-> E. u e. X ( ( tail ` D ) ` u ) = x ) ) |
| 27 |
|
fvelrnb |
|- ( ( tail ` D ) Fn X -> ( y e. ran ( tail ` D ) <-> E. v e. X ( ( tail ` D ) ` v ) = y ) ) |
| 28 |
26 27
|
anbi12d |
|- ( ( tail ` D ) Fn X -> ( ( x e. ran ( tail ` D ) /\ y e. ran ( tail ` D ) ) <-> ( E. u e. X ( ( tail ` D ) ` u ) = x /\ E. v e. X ( ( tail ` D ) ` v ) = y ) ) ) |
| 29 |
2 6 28
|
3syl |
|- ( D e. DirRel -> ( ( x e. ran ( tail ` D ) /\ y e. ran ( tail ` D ) ) <-> ( E. u e. X ( ( tail ` D ) ` u ) = x /\ E. v e. X ( ( tail ` D ) ` v ) = y ) ) ) |
| 30 |
|
reeanv |
|- ( E. u e. X E. v e. X ( ( ( tail ` D ) ` u ) = x /\ ( ( tail ` D ) ` v ) = y ) <-> ( E. u e. X ( ( tail ` D ) ` u ) = x /\ E. v e. X ( ( tail ` D ) ` v ) = y ) ) |
| 31 |
1
|
dirge |
|- ( ( D e. DirRel /\ u e. X /\ v e. X ) -> E. w e. X ( u D w /\ v D w ) ) |
| 32 |
31
|
3expb |
|- ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) -> E. w e. X ( u D w /\ v D w ) ) |
| 33 |
2 6
|
syl |
|- ( D e. DirRel -> ( tail ` D ) Fn X ) |
| 34 |
|
fnfvelrn |
|- ( ( ( tail ` D ) Fn X /\ w e. X ) -> ( ( tail ` D ) ` w ) e. ran ( tail ` D ) ) |
| 35 |
33 34
|
sylan |
|- ( ( D e. DirRel /\ w e. X ) -> ( ( tail ` D ) ` w ) e. ran ( tail ` D ) ) |
| 36 |
35
|
ad2ant2r |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> ( ( tail ` D ) ` w ) e. ran ( tail ` D ) ) |
| 37 |
|
dirtr |
|- ( ( ( D e. DirRel /\ x e. _V ) /\ ( u D w /\ w D x ) ) -> u D x ) |
| 38 |
37
|
exp32 |
|- ( ( D e. DirRel /\ x e. _V ) -> ( u D w -> ( w D x -> u D x ) ) ) |
| 39 |
38
|
elvd |
|- ( D e. DirRel -> ( u D w -> ( w D x -> u D x ) ) ) |
| 40 |
39
|
com23 |
|- ( D e. DirRel -> ( w D x -> ( u D w -> u D x ) ) ) |
| 41 |
40
|
imp |
|- ( ( D e. DirRel /\ w D x ) -> ( u D w -> u D x ) ) |
| 42 |
41
|
ad2ant2rl |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ w D x ) ) -> ( u D w -> u D x ) ) |
| 43 |
|
dirtr |
|- ( ( ( D e. DirRel /\ x e. _V ) /\ ( v D w /\ w D x ) ) -> v D x ) |
| 44 |
43
|
exp32 |
|- ( ( D e. DirRel /\ x e. _V ) -> ( v D w -> ( w D x -> v D x ) ) ) |
| 45 |
44
|
elvd |
|- ( D e. DirRel -> ( v D w -> ( w D x -> v D x ) ) ) |
| 46 |
45
|
com23 |
|- ( D e. DirRel -> ( w D x -> ( v D w -> v D x ) ) ) |
| 47 |
46
|
imp |
|- ( ( D e. DirRel /\ w D x ) -> ( v D w -> v D x ) ) |
| 48 |
47
|
ad2ant2rl |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ w D x ) ) -> ( v D w -> v D x ) ) |
| 49 |
42 48
|
anim12d |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ w D x ) ) -> ( ( u D w /\ v D w ) -> ( u D x /\ v D x ) ) ) |
| 50 |
49
|
expr |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ w e. X ) -> ( w D x -> ( ( u D w /\ v D w ) -> ( u D x /\ v D x ) ) ) ) |
| 51 |
50
|
com23 |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ w e. X ) -> ( ( u D w /\ v D w ) -> ( w D x -> ( u D x /\ v D x ) ) ) ) |
| 52 |
51
|
impr |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> ( w D x -> ( u D x /\ v D x ) ) ) |
| 53 |
|
vex |
|- x e. _V |
| 54 |
1
|
eltail |
|- ( ( D e. DirRel /\ w e. X /\ x e. _V ) -> ( x e. ( ( tail ` D ) ` w ) <-> w D x ) ) |
| 55 |
53 54
|
mp3an3 |
|- ( ( D e. DirRel /\ w e. X ) -> ( x e. ( ( tail ` D ) ` w ) <-> w D x ) ) |
| 56 |
55
|
ad2ant2r |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> ( x e. ( ( tail ` D ) ` w ) <-> w D x ) ) |
| 57 |
1
|
eltail |
|- ( ( D e. DirRel /\ u e. X /\ x e. _V ) -> ( x e. ( ( tail ` D ) ` u ) <-> u D x ) ) |
| 58 |
53 57
|
mp3an3 |
|- ( ( D e. DirRel /\ u e. X ) -> ( x e. ( ( tail ` D ) ` u ) <-> u D x ) ) |
| 59 |
58
|
adantrr |
|- ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) -> ( x e. ( ( tail ` D ) ` u ) <-> u D x ) ) |
| 60 |
1
|
eltail |
|- ( ( D e. DirRel /\ v e. X /\ x e. _V ) -> ( x e. ( ( tail ` D ) ` v ) <-> v D x ) ) |
| 61 |
53 60
|
mp3an3 |
|- ( ( D e. DirRel /\ v e. X ) -> ( x e. ( ( tail ` D ) ` v ) <-> v D x ) ) |
| 62 |
61
|
adantrl |
|- ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) -> ( x e. ( ( tail ` D ) ` v ) <-> v D x ) ) |
| 63 |
59 62
|
anbi12d |
|- ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) -> ( ( x e. ( ( tail ` D ) ` u ) /\ x e. ( ( tail ` D ) ` v ) ) <-> ( u D x /\ v D x ) ) ) |
| 64 |
63
|
adantr |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> ( ( x e. ( ( tail ` D ) ` u ) /\ x e. ( ( tail ` D ) ` v ) ) <-> ( u D x /\ v D x ) ) ) |
| 65 |
52 56 64
|
3imtr4d |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> ( x e. ( ( tail ` D ) ` w ) -> ( x e. ( ( tail ` D ) ` u ) /\ x e. ( ( tail ` D ) ` v ) ) ) ) |
| 66 |
|
elin |
|- ( x e. ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) <-> ( x e. ( ( tail ` D ) ` u ) /\ x e. ( ( tail ` D ) ` v ) ) ) |
| 67 |
65 66
|
imbitrrdi |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> ( x e. ( ( tail ` D ) ` w ) -> x e. ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) ) ) |
| 68 |
67
|
ssrdv |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> ( ( tail ` D ) ` w ) C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) ) |
| 69 |
|
sseq1 |
|- ( z = ( ( tail ` D ) ` w ) -> ( z C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) <-> ( ( tail ` D ) ` w ) C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) ) ) |
| 70 |
69
|
rspcev |
|- ( ( ( ( tail ` D ) ` w ) e. ran ( tail ` D ) /\ ( ( tail ` D ) ` w ) C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) ) -> E. z e. ran ( tail ` D ) z C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) ) |
| 71 |
36 68 70
|
syl2anc |
|- ( ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) /\ ( w e. X /\ ( u D w /\ v D w ) ) ) -> E. z e. ran ( tail ` D ) z C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) ) |
| 72 |
32 71
|
rexlimddv |
|- ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) -> E. z e. ran ( tail ` D ) z C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) ) |
| 73 |
|
ineq1 |
|- ( ( ( tail ` D ) ` u ) = x -> ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) = ( x i^i ( ( tail ` D ) ` v ) ) ) |
| 74 |
73
|
sseq2d |
|- ( ( ( tail ` D ) ` u ) = x -> ( z C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) <-> z C_ ( x i^i ( ( tail ` D ) ` v ) ) ) ) |
| 75 |
74
|
rexbidv |
|- ( ( ( tail ` D ) ` u ) = x -> ( E. z e. ran ( tail ` D ) z C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) <-> E. z e. ran ( tail ` D ) z C_ ( x i^i ( ( tail ` D ) ` v ) ) ) ) |
| 76 |
|
ineq2 |
|- ( ( ( tail ` D ) ` v ) = y -> ( x i^i ( ( tail ` D ) ` v ) ) = ( x i^i y ) ) |
| 77 |
76
|
sseq2d |
|- ( ( ( tail ` D ) ` v ) = y -> ( z C_ ( x i^i ( ( tail ` D ) ` v ) ) <-> z C_ ( x i^i y ) ) ) |
| 78 |
77
|
rexbidv |
|- ( ( ( tail ` D ) ` v ) = y -> ( E. z e. ran ( tail ` D ) z C_ ( x i^i ( ( tail ` D ) ` v ) ) <-> E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 79 |
75 78
|
sylan9bb |
|- ( ( ( ( tail ` D ) ` u ) = x /\ ( ( tail ` D ) ` v ) = y ) -> ( E. z e. ran ( tail ` D ) z C_ ( ( ( tail ` D ) ` u ) i^i ( ( tail ` D ) ` v ) ) <-> E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 80 |
72 79
|
syl5ibcom |
|- ( ( D e. DirRel /\ ( u e. X /\ v e. X ) ) -> ( ( ( ( tail ` D ) ` u ) = x /\ ( ( tail ` D ) ` v ) = y ) -> E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 81 |
80
|
rexlimdvva |
|- ( D e. DirRel -> ( E. u e. X E. v e. X ( ( ( tail ` D ) ` u ) = x /\ ( ( tail ` D ) ` v ) = y ) -> E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 82 |
30 81
|
biimtrrid |
|- ( D e. DirRel -> ( ( E. u e. X ( ( tail ` D ) ` u ) = x /\ E. v e. X ( ( tail ` D ) ` v ) = y ) -> E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 83 |
29 82
|
sylbid |
|- ( D e. DirRel -> ( ( x e. ran ( tail ` D ) /\ y e. ran ( tail ` D ) ) -> E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 84 |
83
|
adantr |
|- ( ( D e. DirRel /\ X =/= (/) ) -> ( ( x e. ran ( tail ` D ) /\ y e. ran ( tail ` D ) ) -> E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 85 |
84
|
ralrimivv |
|- ( ( D e. DirRel /\ X =/= (/) ) -> A. x e. ran ( tail ` D ) A. y e. ran ( tail ` D ) E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) |
| 86 |
14 25 85
|
3jca |
|- ( ( D e. DirRel /\ X =/= (/) ) -> ( ran ( tail ` D ) =/= (/) /\ (/) e/ ran ( tail ` D ) /\ A. x e. ran ( tail ` D ) A. y e. ran ( tail ` D ) E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) |
| 87 |
|
dmexg |
|- ( D e. DirRel -> dom D e. _V ) |
| 88 |
1 87
|
eqeltrid |
|- ( D e. DirRel -> X e. _V ) |
| 89 |
88
|
adantr |
|- ( ( D e. DirRel /\ X =/= (/) ) -> X e. _V ) |
| 90 |
|
isfbas2 |
|- ( X e. _V -> ( ran ( tail ` D ) e. ( fBas ` X ) <-> ( ran ( tail ` D ) C_ ~P X /\ ( ran ( tail ` D ) =/= (/) /\ (/) e/ ran ( tail ` D ) /\ A. x e. ran ( tail ` D ) A. y e. ran ( tail ` D ) E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) ) ) |
| 91 |
89 90
|
syl |
|- ( ( D e. DirRel /\ X =/= (/) ) -> ( ran ( tail ` D ) e. ( fBas ` X ) <-> ( ran ( tail ` D ) C_ ~P X /\ ( ran ( tail ` D ) =/= (/) /\ (/) e/ ran ( tail ` D ) /\ A. x e. ran ( tail ` D ) A. y e. ran ( tail ` D ) E. z e. ran ( tail ` D ) z C_ ( x i^i y ) ) ) ) ) |
| 92 |
4 86 91
|
mpbir2and |
|- ( ( D e. DirRel /\ X =/= (/) ) -> ran ( tail ` D ) e. ( fBas ` X ) ) |