Metamath Proof Explorer


Theorem tailini

Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009)

Ref Expression
Hypothesis tailini.1
|- X = dom D
Assertion tailini
|- ( ( D e. DirRel /\ A e. X ) -> A e. ( ( tail ` D ) ` A ) )

Proof

Step Hyp Ref Expression
1 tailini.1
 |-  X = dom D
2 1 dirref
 |-  ( ( D e. DirRel /\ A e. X ) -> A D A )
3 1 eltail
 |-  ( ( D e. DirRel /\ A e. X /\ A e. X ) -> ( A e. ( ( tail ` D ) ` A ) <-> A D A ) )
4 3 3anidm23
 |-  ( ( D e. DirRel /\ A e. X ) -> ( A e. ( ( tail ` D ) ` A ) <-> A D A ) )
5 2 4 mpbird
 |-  ( ( D e. DirRel /\ A e. X ) -> A e. ( ( tail ` D ) ` A ) )