Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tailini.1 | |- X = dom D |
|
Assertion | tailini | |- ( ( D e. DirRel /\ A e. X ) -> A e. ( ( tail ` D ) ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tailini.1 | |- X = dom D |
|
2 | 1 | dirref | |- ( ( D e. DirRel /\ A e. X ) -> A D A ) |
3 | 1 | eltail | |- ( ( D e. DirRel /\ A e. X /\ A e. X ) -> ( A e. ( ( tail ` D ) ` A ) <-> A D A ) ) |
4 | 3 | 3anidm23 | |- ( ( D e. DirRel /\ A e. X ) -> ( A e. ( ( tail ` D ) ` A ) <-> A D A ) ) |
5 | 2 4 | mpbird | |- ( ( D e. DirRel /\ A e. X ) -> A e. ( ( tail ` D ) ` A ) ) |