Metamath Proof Explorer


Theorem tailfb

Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypothesis tailfb.1 X=domD
Assertion tailfb DDirRelXrantailDfBasX

Proof

Step Hyp Ref Expression
1 tailfb.1 X=domD
2 1 tailf DDirReltailD:X𝒫X
3 2 frnd DDirRelrantailD𝒫X
4 3 adantr DDirRelXrantailD𝒫X
5 n0 XxxX
6 ffn tailD:X𝒫XtailDFnX
7 fnfvelrn tailDFnXxXtailDxrantailD
8 7 ex tailDFnXxXtailDxrantailD
9 2 6 8 3syl DDirRelxXtailDxrantailD
10 ne0i tailDxrantailDrantailD
11 9 10 syl6 DDirRelxXrantailD
12 11 exlimdv DDirRelxxXrantailD
13 5 12 biimtrid DDirRelXrantailD
14 13 imp DDirRelXrantailD
15 1 tailini DDirRelxXxtailDx
16 n0i xtailDx¬tailDx=
17 15 16 syl DDirRelxX¬tailDx=
18 17 nrexdv DDirRel¬xXtailDx=
19 18 adantr DDirRelX¬xXtailDx=
20 fvelrnb tailDFnXrantailDxXtailDx=
21 2 6 20 3syl DDirRelrantailDxXtailDx=
22 21 adantr DDirRelXrantailDxXtailDx=
23 19 22 mtbird DDirRelX¬rantailD
24 df-nel rantailD¬rantailD
25 23 24 sylibr DDirRelXrantailD
26 fvelrnb tailDFnXxrantailDuXtailDu=x
27 fvelrnb tailDFnXyrantailDvXtailDv=y
28 26 27 anbi12d tailDFnXxrantailDyrantailDuXtailDu=xvXtailDv=y
29 2 6 28 3syl DDirRelxrantailDyrantailDuXtailDu=xvXtailDv=y
30 reeanv uXvXtailDu=xtailDv=yuXtailDu=xvXtailDv=y
31 1 dirge DDirReluXvXwXuDwvDw
32 31 3expb DDirReluXvXwXuDwvDw
33 2 6 syl DDirReltailDFnX
34 fnfvelrn tailDFnXwXtailDwrantailD
35 33 34 sylan DDirRelwXtailDwrantailD
36 35 ad2ant2r DDirReluXvXwXuDwvDwtailDwrantailD
37 dirtr DDirRelxVuDwwDxuDx
38 37 exp32 DDirRelxVuDwwDxuDx
39 38 elvd DDirReluDwwDxuDx
40 39 com23 DDirRelwDxuDwuDx
41 40 imp DDirRelwDxuDwuDx
42 41 ad2ant2rl DDirReluXvXwXwDxuDwuDx
43 dirtr DDirRelxVvDwwDxvDx
44 43 exp32 DDirRelxVvDwwDxvDx
45 44 elvd DDirRelvDwwDxvDx
46 45 com23 DDirRelwDxvDwvDx
47 46 imp DDirRelwDxvDwvDx
48 47 ad2ant2rl DDirReluXvXwXwDxvDwvDx
49 42 48 anim12d DDirReluXvXwXwDxuDwvDwuDxvDx
50 49 expr DDirReluXvXwXwDxuDwvDwuDxvDx
51 50 com23 DDirReluXvXwXuDwvDwwDxuDxvDx
52 51 impr DDirReluXvXwXuDwvDwwDxuDxvDx
53 vex xV
54 1 eltail DDirRelwXxVxtailDwwDx
55 53 54 mp3an3 DDirRelwXxtailDwwDx
56 55 ad2ant2r DDirReluXvXwXuDwvDwxtailDwwDx
57 1 eltail DDirReluXxVxtailDuuDx
58 53 57 mp3an3 DDirReluXxtailDuuDx
59 58 adantrr DDirReluXvXxtailDuuDx
60 1 eltail DDirRelvXxVxtailDvvDx
61 53 60 mp3an3 DDirRelvXxtailDvvDx
62 61 adantrl DDirReluXvXxtailDvvDx
63 59 62 anbi12d DDirReluXvXxtailDuxtailDvuDxvDx
64 63 adantr DDirReluXvXwXuDwvDwxtailDuxtailDvuDxvDx
65 52 56 64 3imtr4d DDirReluXvXwXuDwvDwxtailDwxtailDuxtailDv
66 elin xtailDutailDvxtailDuxtailDv
67 65 66 syl6ibr DDirReluXvXwXuDwvDwxtailDwxtailDutailDv
68 67 ssrdv DDirReluXvXwXuDwvDwtailDwtailDutailDv
69 sseq1 z=tailDwztailDutailDvtailDwtailDutailDv
70 69 rspcev tailDwrantailDtailDwtailDutailDvzrantailDztailDutailDv
71 36 68 70 syl2anc DDirReluXvXwXuDwvDwzrantailDztailDutailDv
72 32 71 rexlimddv DDirReluXvXzrantailDztailDutailDv
73 ineq1 tailDu=xtailDutailDv=xtailDv
74 73 sseq2d tailDu=xztailDutailDvzxtailDv
75 74 rexbidv tailDu=xzrantailDztailDutailDvzrantailDzxtailDv
76 ineq2 tailDv=yxtailDv=xy
77 76 sseq2d tailDv=yzxtailDvzxy
78 77 rexbidv tailDv=yzrantailDzxtailDvzrantailDzxy
79 75 78 sylan9bb tailDu=xtailDv=yzrantailDztailDutailDvzrantailDzxy
80 72 79 syl5ibcom DDirReluXvXtailDu=xtailDv=yzrantailDzxy
81 80 rexlimdvva DDirReluXvXtailDu=xtailDv=yzrantailDzxy
82 30 81 biimtrrid DDirReluXtailDu=xvXtailDv=yzrantailDzxy
83 29 82 sylbid DDirRelxrantailDyrantailDzrantailDzxy
84 83 adantr DDirRelXxrantailDyrantailDzrantailDzxy
85 84 ralrimivv DDirRelXxrantailDyrantailDzrantailDzxy
86 14 25 85 3jca DDirRelXrantailDrantailDxrantailDyrantailDzrantailDzxy
87 dmexg DDirReldomDV
88 1 87 eqeltrid DDirRelXV
89 88 adantr DDirRelXXV
90 isfbas2 XVrantailDfBasXrantailD𝒫XrantailDrantailDxrantailDyrantailDzrantailDzxy
91 89 90 syl DDirRelXrantailDfBasXrantailD𝒫XrantailDrantailDxrantailDyrantailDzrantailDzxy
92 4 86 91 mpbir2and DDirRelXrantailDfBasX