Metamath Proof Explorer


Theorem tailfb

Description: The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypothesis tailfb.1 X = dom D
Assertion tailfb D DirRel X ran tail D fBas X

Proof

Step Hyp Ref Expression
1 tailfb.1 X = dom D
2 1 tailf D DirRel tail D : X 𝒫 X
3 2 frnd D DirRel ran tail D 𝒫 X
4 3 adantr D DirRel X ran tail D 𝒫 X
5 n0 X x x X
6 ffn tail D : X 𝒫 X tail D Fn X
7 fnfvelrn tail D Fn X x X tail D x ran tail D
8 7 ex tail D Fn X x X tail D x ran tail D
9 2 6 8 3syl D DirRel x X tail D x ran tail D
10 ne0i tail D x ran tail D ran tail D
11 9 10 syl6 D DirRel x X ran tail D
12 11 exlimdv D DirRel x x X ran tail D
13 5 12 syl5bi D DirRel X ran tail D
14 13 imp D DirRel X ran tail D
15 1 tailini D DirRel x X x tail D x
16 n0i x tail D x ¬ tail D x =
17 15 16 syl D DirRel x X ¬ tail D x =
18 17 nrexdv D DirRel ¬ x X tail D x =
19 18 adantr D DirRel X ¬ x X tail D x =
20 fvelrnb tail D Fn X ran tail D x X tail D x =
21 2 6 20 3syl D DirRel ran tail D x X tail D x =
22 21 adantr D DirRel X ran tail D x X tail D x =
23 19 22 mtbird D DirRel X ¬ ran tail D
24 df-nel ran tail D ¬ ran tail D
25 23 24 sylibr D DirRel X ran tail D
26 fvelrnb tail D Fn X x ran tail D u X tail D u = x
27 fvelrnb tail D Fn X y ran tail D v X tail D v = y
28 26 27 anbi12d tail D Fn X x ran tail D y ran tail D u X tail D u = x v X tail D v = y
29 2 6 28 3syl D DirRel x ran tail D y ran tail D u X tail D u = x v X tail D v = y
30 reeanv u X v X tail D u = x tail D v = y u X tail D u = x v X tail D v = y
31 1 dirge D DirRel u X v X w X u D w v D w
32 31 3expb D DirRel u X v X w X u D w v D w
33 2 6 syl D DirRel tail D Fn X
34 fnfvelrn tail D Fn X w X tail D w ran tail D
35 33 34 sylan D DirRel w X tail D w ran tail D
36 35 ad2ant2r D DirRel u X v X w X u D w v D w tail D w ran tail D
37 dirtr D DirRel x V u D w w D x u D x
38 37 exp32 D DirRel x V u D w w D x u D x
39 38 elvd D DirRel u D w w D x u D x
40 39 com23 D DirRel w D x u D w u D x
41 40 imp D DirRel w D x u D w u D x
42 41 ad2ant2rl D DirRel u X v X w X w D x u D w u D x
43 dirtr D DirRel x V v D w w D x v D x
44 43 exp32 D DirRel x V v D w w D x v D x
45 44 elvd D DirRel v D w w D x v D x
46 45 com23 D DirRel w D x v D w v D x
47 46 imp D DirRel w D x v D w v D x
48 47 ad2ant2rl D DirRel u X v X w X w D x v D w v D x
49 42 48 anim12d D DirRel u X v X w X w D x u D w v D w u D x v D x
50 49 expr D DirRel u X v X w X w D x u D w v D w u D x v D x
51 50 com23 D DirRel u X v X w X u D w v D w w D x u D x v D x
52 51 impr D DirRel u X v X w X u D w v D w w D x u D x v D x
53 vex x V
54 1 eltail D DirRel w X x V x tail D w w D x
55 53 54 mp3an3 D DirRel w X x tail D w w D x
56 55 ad2ant2r D DirRel u X v X w X u D w v D w x tail D w w D x
57 1 eltail D DirRel u X x V x tail D u u D x
58 53 57 mp3an3 D DirRel u X x tail D u u D x
59 58 adantrr D DirRel u X v X x tail D u u D x
60 1 eltail D DirRel v X x V x tail D v v D x
61 53 60 mp3an3 D DirRel v X x tail D v v D x
62 61 adantrl D DirRel u X v X x tail D v v D x
63 59 62 anbi12d D DirRel u X v X x tail D u x tail D v u D x v D x
64 63 adantr D DirRel u X v X w X u D w v D w x tail D u x tail D v u D x v D x
65 52 56 64 3imtr4d D DirRel u X v X w X u D w v D w x tail D w x tail D u x tail D v
66 elin x tail D u tail D v x tail D u x tail D v
67 65 66 syl6ibr D DirRel u X v X w X u D w v D w x tail D w x tail D u tail D v
68 67 ssrdv D DirRel u X v X w X u D w v D w tail D w tail D u tail D v
69 sseq1 z = tail D w z tail D u tail D v tail D w tail D u tail D v
70 69 rspcev tail D w ran tail D tail D w tail D u tail D v z ran tail D z tail D u tail D v
71 36 68 70 syl2anc D DirRel u X v X w X u D w v D w z ran tail D z tail D u tail D v
72 32 71 rexlimddv D DirRel u X v X z ran tail D z tail D u tail D v
73 ineq1 tail D u = x tail D u tail D v = x tail D v
74 73 sseq2d tail D u = x z tail D u tail D v z x tail D v
75 74 rexbidv tail D u = x z ran tail D z tail D u tail D v z ran tail D z x tail D v
76 ineq2 tail D v = y x tail D v = x y
77 76 sseq2d tail D v = y z x tail D v z x y
78 77 rexbidv tail D v = y z ran tail D z x tail D v z ran tail D z x y
79 75 78 sylan9bb tail D u = x tail D v = y z ran tail D z tail D u tail D v z ran tail D z x y
80 72 79 syl5ibcom D DirRel u X v X tail D u = x tail D v = y z ran tail D z x y
81 80 rexlimdvva D DirRel u X v X tail D u = x tail D v = y z ran tail D z x y
82 30 81 syl5bir D DirRel u X tail D u = x v X tail D v = y z ran tail D z x y
83 29 82 sylbid D DirRel x ran tail D y ran tail D z ran tail D z x y
84 83 adantr D DirRel X x ran tail D y ran tail D z ran tail D z x y
85 84 ralrimivv D DirRel X x ran tail D y ran tail D z ran tail D z x y
86 14 25 85 3jca D DirRel X ran tail D ran tail D x ran tail D y ran tail D z ran tail D z x y
87 dmexg D DirRel dom D V
88 1 87 eqeltrid D DirRel X V
89 88 adantr D DirRel X X V
90 isfbas2 X V ran tail D fBas X ran tail D 𝒫 X ran tail D ran tail D x ran tail D y ran tail D z ran tail D z x y
91 89 90 syl D DirRel X ran tail D fBas X ran tail D 𝒫 X ran tail D ran tail D x ran tail D y ran tail D z ran tail D z x y
92 4 86 91 mpbir2and D DirRel X ran tail D fBas X