Metamath Proof Explorer


Theorem filnetlem1

Description: Lemma for filnet . Change variables. (Contributed by Jeff Hankins, 13-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H=nFn×n
filnet.d D=xy|xHyH1sty1stx
filnetlem1.a AV
filnetlem1.b BV
Assertion filnetlem1 ADBAHBH1stB1stA

Proof

Step Hyp Ref Expression
1 filnet.h H=nFn×n
2 filnet.d D=xy|xHyH1sty1stx
3 filnetlem1.a AV
4 filnetlem1.b BV
5 fveq2 x=A1stx=1stA
6 5 sseq2d x=A1sty1stx1sty1stA
7 fveq2 y=B1sty=1stB
8 7 sseq1d y=B1sty1stA1stB1stA
9 6 8 sylan9bb x=Ay=B1sty1stx1stB1stA
10 9 2 brab2a ADBAHBH1stB1stA