Metamath Proof Explorer


Theorem filnetlem1

Description: Lemma for filnet . Change variables. (Contributed by Jeff Hankins, 13-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H = n F n × n
filnet.d D = x y | x H y H 1 st y 1 st x
filnetlem1.a A V
filnetlem1.b B V
Assertion filnetlem1 A D B A H B H 1 st B 1 st A

Proof

Step Hyp Ref Expression
1 filnet.h H = n F n × n
2 filnet.d D = x y | x H y H 1 st y 1 st x
3 filnetlem1.a A V
4 filnetlem1.b B V
5 fveq2 x = A 1 st x = 1 st A
6 5 sseq2d x = A 1 st y 1 st x 1 st y 1 st A
7 fveq2 y = B 1 st y = 1 st B
8 7 sseq1d y = B 1 st y 1 st A 1 st B 1 st A
9 6 8 sylan9bb x = A y = B 1 st y 1 st x 1 st B 1 st A
10 9 2 brab2a A D B A H B H 1 st B 1 st A