Metamath Proof Explorer


Theorem filnetlem2

Description: Lemma for filnet . The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H=nFn×n
filnet.d D=xy|xHyH1sty1stx
Assertion filnetlem2 IHDDH×H

Proof

Step Hyp Ref Expression
1 filnet.h H=nFn×n
2 filnet.d D=xy|xHyH1sty1stx
3 idref IHDzHzDz
4 ssid 1stz1stz
5 vex zV
6 1 2 5 5 filnetlem1 zDzzHzH1stz1stz
7 4 6 mpbiran2 zDzzHzH
8 7 biimpri zHzHzDz
9 8 anidms zHzDz
10 3 9 mprgbir IHD
11 opabssxp xy|xHyH1sty1stxH×H
12 2 11 eqsstri DH×H
13 10 12 pm3.2i IHDDH×H