Metamath Proof Explorer


Theorem filnetlem2

Description: Lemma for filnet . The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H = n F n × n
filnet.d D = x y | x H y H 1 st y 1 st x
Assertion filnetlem2 I H D D H × H

Proof

Step Hyp Ref Expression
1 filnet.h H = n F n × n
2 filnet.d D = x y | x H y H 1 st y 1 st x
3 idref I H D z H z D z
4 ssid 1 st z 1 st z
5 vex z V
6 1 2 5 5 filnetlem1 z D z z H z H 1 st z 1 st z
7 4 6 mpbiran2 z D z z H z H
8 7 biimpri z H z H z D z
9 8 anidms z H z D z
10 3 9 mprgbir I H D
11 opabssxp x y | x H y H 1 st y 1 st x H × H
12 2 11 eqsstri D H × H
13 10 12 pm3.2i I H D D H × H