Step |
Hyp |
Ref |
Expression |
1 |
|
filnet.h |
⊢ 𝐻 = ∪ 𝑛 ∈ 𝐹 ( { 𝑛 } × 𝑛 ) |
2 |
|
filnet.d |
⊢ 𝐷 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ∧ ( 1st ‘ 𝑦 ) ⊆ ( 1st ‘ 𝑥 ) ) } |
3 |
|
idref |
⊢ ( ( I ↾ 𝐻 ) ⊆ 𝐷 ↔ ∀ 𝑧 ∈ 𝐻 𝑧 𝐷 𝑧 ) |
4 |
|
ssid |
⊢ ( 1st ‘ 𝑧 ) ⊆ ( 1st ‘ 𝑧 ) |
5 |
|
vex |
⊢ 𝑧 ∈ V |
6 |
1 2 5 5
|
filnetlem1 |
⊢ ( 𝑧 𝐷 𝑧 ↔ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ∧ ( 1st ‘ 𝑧 ) ⊆ ( 1st ‘ 𝑧 ) ) ) |
7 |
4 6
|
mpbiran2 |
⊢ ( 𝑧 𝐷 𝑧 ↔ ( 𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) |
8 |
7
|
biimpri |
⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → 𝑧 𝐷 𝑧 ) |
9 |
8
|
anidms |
⊢ ( 𝑧 ∈ 𝐻 → 𝑧 𝐷 𝑧 ) |
10 |
3 9
|
mprgbir |
⊢ ( I ↾ 𝐻 ) ⊆ 𝐷 |
11 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ∧ ( 1st ‘ 𝑦 ) ⊆ ( 1st ‘ 𝑥 ) ) } ⊆ ( 𝐻 × 𝐻 ) |
12 |
2 11
|
eqsstri |
⊢ 𝐷 ⊆ ( 𝐻 × 𝐻 ) |
13 |
10 12
|
pm3.2i |
⊢ ( ( I ↾ 𝐻 ) ⊆ 𝐷 ∧ 𝐷 ⊆ ( 𝐻 × 𝐻 ) ) |