Metamath Proof Explorer


Theorem filnetlem2

Description: Lemma for filnet . The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h 𝐻 = 𝑛𝐹 ( { 𝑛 } × 𝑛 )
filnet.d 𝐷 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ( 1st𝑦 ) ⊆ ( 1st𝑥 ) ) }
Assertion filnetlem2 ( ( I ↾ 𝐻 ) ⊆ 𝐷𝐷 ⊆ ( 𝐻 × 𝐻 ) )

Proof

Step Hyp Ref Expression
1 filnet.h 𝐻 = 𝑛𝐹 ( { 𝑛 } × 𝑛 )
2 filnet.d 𝐷 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ( 1st𝑦 ) ⊆ ( 1st𝑥 ) ) }
3 idref ( ( I ↾ 𝐻 ) ⊆ 𝐷 ↔ ∀ 𝑧𝐻 𝑧 𝐷 𝑧 )
4 ssid ( 1st𝑧 ) ⊆ ( 1st𝑧 )
5 vex 𝑧 ∈ V
6 1 2 5 5 filnetlem1 ( 𝑧 𝐷 𝑧 ↔ ( ( 𝑧𝐻𝑧𝐻 ) ∧ ( 1st𝑧 ) ⊆ ( 1st𝑧 ) ) )
7 4 6 mpbiran2 ( 𝑧 𝐷 𝑧 ↔ ( 𝑧𝐻𝑧𝐻 ) )
8 7 biimpri ( ( 𝑧𝐻𝑧𝐻 ) → 𝑧 𝐷 𝑧 )
9 8 anidms ( 𝑧𝐻𝑧 𝐷 𝑧 )
10 3 9 mprgbir ( I ↾ 𝐻 ) ⊆ 𝐷
11 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ( 1st𝑦 ) ⊆ ( 1st𝑥 ) ) } ⊆ ( 𝐻 × 𝐻 )
12 2 11 eqsstri 𝐷 ⊆ ( 𝐻 × 𝐻 )
13 10 12 pm3.2i ( ( I ↾ 𝐻 ) ⊆ 𝐷𝐷 ⊆ ( 𝐻 × 𝐻 ) )