Step |
Hyp |
Ref |
Expression |
1 |
|
filnet.h |
|- H = U_ n e. F ( { n } X. n ) |
2 |
|
filnet.d |
|- D = { <. x , y >. | ( ( x e. H /\ y e. H ) /\ ( 1st ` y ) C_ ( 1st ` x ) ) } |
3 |
|
idref |
|- ( ( _I |` H ) C_ D <-> A. z e. H z D z ) |
4 |
|
ssid |
|- ( 1st ` z ) C_ ( 1st ` z ) |
5 |
|
vex |
|- z e. _V |
6 |
1 2 5 5
|
filnetlem1 |
|- ( z D z <-> ( ( z e. H /\ z e. H ) /\ ( 1st ` z ) C_ ( 1st ` z ) ) ) |
7 |
4 6
|
mpbiran2 |
|- ( z D z <-> ( z e. H /\ z e. H ) ) |
8 |
7
|
biimpri |
|- ( ( z e. H /\ z e. H ) -> z D z ) |
9 |
8
|
anidms |
|- ( z e. H -> z D z ) |
10 |
3 9
|
mprgbir |
|- ( _I |` H ) C_ D |
11 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. H /\ y e. H ) /\ ( 1st ` y ) C_ ( 1st ` x ) ) } C_ ( H X. H ) |
12 |
2 11
|
eqsstri |
|- D C_ ( H X. H ) |
13 |
10 12
|
pm3.2i |
|- ( ( _I |` H ) C_ D /\ D C_ ( H X. H ) ) |