Step |
Hyp |
Ref |
Expression |
1 |
|
filnet.h |
|- H = U_ n e. F ( { n } X. n ) |
2 |
|
filnet.d |
|- D = { <. x , y >. | ( ( x e. H /\ y e. H ) /\ ( 1st ` y ) C_ ( 1st ` x ) ) } |
3 |
|
dmresi |
|- dom ( _I |` H ) = H |
4 |
1 2
|
filnetlem2 |
|- ( ( _I |` H ) C_ D /\ D C_ ( H X. H ) ) |
5 |
4
|
simpli |
|- ( _I |` H ) C_ D |
6 |
|
dmss |
|- ( ( _I |` H ) C_ D -> dom ( _I |` H ) C_ dom D ) |
7 |
5 6
|
ax-mp |
|- dom ( _I |` H ) C_ dom D |
8 |
3 7
|
eqsstrri |
|- H C_ dom D |
9 |
|
ssun1 |
|- dom D C_ ( dom D u. ran D ) |
10 |
8 9
|
sstri |
|- H C_ ( dom D u. ran D ) |
11 |
|
dmrnssfld |
|- ( dom D u. ran D ) C_ U. U. D |
12 |
10 11
|
sstri |
|- H C_ U. U. D |
13 |
4
|
simpri |
|- D C_ ( H X. H ) |
14 |
|
uniss |
|- ( D C_ ( H X. H ) -> U. D C_ U. ( H X. H ) ) |
15 |
|
uniss |
|- ( U. D C_ U. ( H X. H ) -> U. U. D C_ U. U. ( H X. H ) ) |
16 |
13 14 15
|
mp2b |
|- U. U. D C_ U. U. ( H X. H ) |
17 |
|
unixpss |
|- U. U. ( H X. H ) C_ ( H u. H ) |
18 |
|
unidm |
|- ( H u. H ) = H |
19 |
17 18
|
sseqtri |
|- U. U. ( H X. H ) C_ H |
20 |
16 19
|
sstri |
|- U. U. D C_ H |
21 |
12 20
|
eqssi |
|- H = U. U. D |
22 |
|
filelss |
|- ( ( F e. ( Fil ` X ) /\ n e. F ) -> n C_ X ) |
23 |
|
xpss2 |
|- ( n C_ X -> ( { n } X. n ) C_ ( { n } X. X ) ) |
24 |
22 23
|
syl |
|- ( ( F e. ( Fil ` X ) /\ n e. F ) -> ( { n } X. n ) C_ ( { n } X. X ) ) |
25 |
24
|
ralrimiva |
|- ( F e. ( Fil ` X ) -> A. n e. F ( { n } X. n ) C_ ( { n } X. X ) ) |
26 |
|
ss2iun |
|- ( A. n e. F ( { n } X. n ) C_ ( { n } X. X ) -> U_ n e. F ( { n } X. n ) C_ U_ n e. F ( { n } X. X ) ) |
27 |
25 26
|
syl |
|- ( F e. ( Fil ` X ) -> U_ n e. F ( { n } X. n ) C_ U_ n e. F ( { n } X. X ) ) |
28 |
|
iunxpconst |
|- U_ n e. F ( { n } X. X ) = ( F X. X ) |
29 |
27 28
|
sseqtrdi |
|- ( F e. ( Fil ` X ) -> U_ n e. F ( { n } X. n ) C_ ( F X. X ) ) |
30 |
1 29
|
eqsstrid |
|- ( F e. ( Fil ` X ) -> H C_ ( F X. X ) ) |
31 |
5
|
a1i |
|- ( F e. ( Fil ` X ) -> ( _I |` H ) C_ D ) |
32 |
2
|
relopabiv |
|- Rel D |
33 |
31 32
|
jctil |
|- ( F e. ( Fil ` X ) -> ( Rel D /\ ( _I |` H ) C_ D ) ) |
34 |
|
simpl |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> F e. ( Fil ` X ) ) |
35 |
30
|
adantr |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> H C_ ( F X. X ) ) |
36 |
|
simprl |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> v e. H ) |
37 |
35 36
|
sseldd |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> v e. ( F X. X ) ) |
38 |
|
xp1st |
|- ( v e. ( F X. X ) -> ( 1st ` v ) e. F ) |
39 |
37 38
|
syl |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> ( 1st ` v ) e. F ) |
40 |
|
simprr |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> z e. H ) |
41 |
35 40
|
sseldd |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> z e. ( F X. X ) ) |
42 |
|
xp1st |
|- ( z e. ( F X. X ) -> ( 1st ` z ) e. F ) |
43 |
41 42
|
syl |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> ( 1st ` z ) e. F ) |
44 |
|
filinn0 |
|- ( ( F e. ( Fil ` X ) /\ ( 1st ` v ) e. F /\ ( 1st ` z ) e. F ) -> ( ( 1st ` v ) i^i ( 1st ` z ) ) =/= (/) ) |
45 |
34 39 43 44
|
syl3anc |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> ( ( 1st ` v ) i^i ( 1st ` z ) ) =/= (/) ) |
46 |
|
n0 |
|- ( ( ( 1st ` v ) i^i ( 1st ` z ) ) =/= (/) <-> E. u u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) |
47 |
45 46
|
sylib |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> E. u u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) |
48 |
36
|
adantr |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> v e. H ) |
49 |
|
filin |
|- ( ( F e. ( Fil ` X ) /\ ( 1st ` v ) e. F /\ ( 1st ` z ) e. F ) -> ( ( 1st ` v ) i^i ( 1st ` z ) ) e. F ) |
50 |
34 39 43 49
|
syl3anc |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> ( ( 1st ` v ) i^i ( 1st ` z ) ) e. F ) |
51 |
50
|
adantr |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> ( ( 1st ` v ) i^i ( 1st ` z ) ) e. F ) |
52 |
|
simpr |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) |
53 |
|
id |
|- ( n = ( ( 1st ` v ) i^i ( 1st ` z ) ) -> n = ( ( 1st ` v ) i^i ( 1st ` z ) ) ) |
54 |
53
|
opeliunxp2 |
|- ( <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. U_ n e. F ( { n } X. n ) <-> ( ( ( 1st ` v ) i^i ( 1st ` z ) ) e. F /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) ) |
55 |
51 52 54
|
sylanbrc |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. U_ n e. F ( { n } X. n ) ) |
56 |
55 1
|
eleqtrrdi |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. H ) |
57 |
|
fvex |
|- ( 1st ` v ) e. _V |
58 |
57
|
inex1 |
|- ( ( 1st ` v ) i^i ( 1st ` z ) ) e. _V |
59 |
|
vex |
|- u e. _V |
60 |
58 59
|
op1st |
|- ( 1st ` <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) = ( ( 1st ` v ) i^i ( 1st ` z ) ) |
61 |
|
inss1 |
|- ( ( 1st ` v ) i^i ( 1st ` z ) ) C_ ( 1st ` v ) |
62 |
60 61
|
eqsstri |
|- ( 1st ` <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) C_ ( 1st ` v ) |
63 |
|
vex |
|- v e. _V |
64 |
|
opex |
|- <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. _V |
65 |
1 2 63 64
|
filnetlem1 |
|- ( v D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. <-> ( ( v e. H /\ <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. H ) /\ ( 1st ` <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) C_ ( 1st ` v ) ) ) |
66 |
62 65
|
mpbiran2 |
|- ( v D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. <-> ( v e. H /\ <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. H ) ) |
67 |
48 56 66
|
sylanbrc |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> v D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) |
68 |
40
|
adantr |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> z e. H ) |
69 |
|
inss2 |
|- ( ( 1st ` v ) i^i ( 1st ` z ) ) C_ ( 1st ` z ) |
70 |
60 69
|
eqsstri |
|- ( 1st ` <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) C_ ( 1st ` z ) |
71 |
|
vex |
|- z e. _V |
72 |
1 2 71 64
|
filnetlem1 |
|- ( z D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. <-> ( ( z e. H /\ <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. H ) /\ ( 1st ` <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) C_ ( 1st ` z ) ) ) |
73 |
70 72
|
mpbiran2 |
|- ( z D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. <-> ( z e. H /\ <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. e. H ) ) |
74 |
68 56 73
|
sylanbrc |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> z D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) |
75 |
|
breq2 |
|- ( w = <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. -> ( v D w <-> v D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) ) |
76 |
|
breq2 |
|- ( w = <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. -> ( z D w <-> z D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) ) |
77 |
75 76
|
anbi12d |
|- ( w = <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. -> ( ( v D w /\ z D w ) <-> ( v D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. /\ z D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) ) ) |
78 |
64 77
|
spcev |
|- ( ( v D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. /\ z D <. ( ( 1st ` v ) i^i ( 1st ` z ) ) , u >. ) -> E. w ( v D w /\ z D w ) ) |
79 |
67 74 78
|
syl2anc |
|- ( ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) /\ u e. ( ( 1st ` v ) i^i ( 1st ` z ) ) ) -> E. w ( v D w /\ z D w ) ) |
80 |
47 79
|
exlimddv |
|- ( ( F e. ( Fil ` X ) /\ ( v e. H /\ z e. H ) ) -> E. w ( v D w /\ z D w ) ) |
81 |
80
|
ralrimivva |
|- ( F e. ( Fil ` X ) -> A. v e. H A. z e. H E. w ( v D w /\ z D w ) ) |
82 |
|
codir |
|- ( ( H X. H ) C_ ( `' D o. D ) <-> A. v e. H A. z e. H E. w ( v D w /\ z D w ) ) |
83 |
81 82
|
sylibr |
|- ( F e. ( Fil ` X ) -> ( H X. H ) C_ ( `' D o. D ) ) |
84 |
|
vex |
|- w e. _V |
85 |
1 2 63 84
|
filnetlem1 |
|- ( v D w <-> ( ( v e. H /\ w e. H ) /\ ( 1st ` w ) C_ ( 1st ` v ) ) ) |
86 |
85
|
simplbi |
|- ( v D w -> ( v e. H /\ w e. H ) ) |
87 |
86
|
simpld |
|- ( v D w -> v e. H ) |
88 |
1 2 84 71
|
filnetlem1 |
|- ( w D z <-> ( ( w e. H /\ z e. H ) /\ ( 1st ` z ) C_ ( 1st ` w ) ) ) |
89 |
88
|
simplbi |
|- ( w D z -> ( w e. H /\ z e. H ) ) |
90 |
89
|
simprd |
|- ( w D z -> z e. H ) |
91 |
87 90
|
anim12i |
|- ( ( v D w /\ w D z ) -> ( v e. H /\ z e. H ) ) |
92 |
88
|
simprbi |
|- ( w D z -> ( 1st ` z ) C_ ( 1st ` w ) ) |
93 |
85
|
simprbi |
|- ( v D w -> ( 1st ` w ) C_ ( 1st ` v ) ) |
94 |
92 93
|
sylan9ssr |
|- ( ( v D w /\ w D z ) -> ( 1st ` z ) C_ ( 1st ` v ) ) |
95 |
1 2 63 71
|
filnetlem1 |
|- ( v D z <-> ( ( v e. H /\ z e. H ) /\ ( 1st ` z ) C_ ( 1st ` v ) ) ) |
96 |
91 94 95
|
sylanbrc |
|- ( ( v D w /\ w D z ) -> v D z ) |
97 |
96
|
ax-gen |
|- A. z ( ( v D w /\ w D z ) -> v D z ) |
98 |
97
|
gen2 |
|- A. v A. w A. z ( ( v D w /\ w D z ) -> v D z ) |
99 |
|
cotr |
|- ( ( D o. D ) C_ D <-> A. v A. w A. z ( ( v D w /\ w D z ) -> v D z ) ) |
100 |
98 99
|
mpbir |
|- ( D o. D ) C_ D |
101 |
83 100
|
jctil |
|- ( F e. ( Fil ` X ) -> ( ( D o. D ) C_ D /\ ( H X. H ) C_ ( `' D o. D ) ) ) |
102 |
|
filtop |
|- ( F e. ( Fil ` X ) -> X e. F ) |
103 |
|
xpexg |
|- ( ( F e. ( Fil ` X ) /\ X e. F ) -> ( F X. X ) e. _V ) |
104 |
102 103
|
mpdan |
|- ( F e. ( Fil ` X ) -> ( F X. X ) e. _V ) |
105 |
104 30
|
ssexd |
|- ( F e. ( Fil ` X ) -> H e. _V ) |
106 |
105 105
|
xpexd |
|- ( F e. ( Fil ` X ) -> ( H X. H ) e. _V ) |
107 |
|
ssexg |
|- ( ( D C_ ( H X. H ) /\ ( H X. H ) e. _V ) -> D e. _V ) |
108 |
13 106 107
|
sylancr |
|- ( F e. ( Fil ` X ) -> D e. _V ) |
109 |
21
|
isdir |
|- ( D e. _V -> ( D e. DirRel <-> ( ( Rel D /\ ( _I |` H ) C_ D ) /\ ( ( D o. D ) C_ D /\ ( H X. H ) C_ ( `' D o. D ) ) ) ) ) |
110 |
108 109
|
syl |
|- ( F e. ( Fil ` X ) -> ( D e. DirRel <-> ( ( Rel D /\ ( _I |` H ) C_ D ) /\ ( ( D o. D ) C_ D /\ ( H X. H ) C_ ( `' D o. D ) ) ) ) ) |
111 |
33 101 110
|
mpbir2and |
|- ( F e. ( Fil ` X ) -> D e. DirRel ) |
112 |
30 111
|
jca |
|- ( F e. ( Fil ` X ) -> ( H C_ ( F X. X ) /\ D e. DirRel ) ) |
113 |
21 112
|
pm3.2i |
|- ( H = U. U. D /\ ( F e. ( Fil ` X ) -> ( H C_ ( F X. X ) /\ D e. DirRel ) ) ) |