Metamath Proof Explorer


Theorem filnetlem3

Description: Lemma for filnet . (Contributed by Jeff Hankins, 13-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H = n F n × n
filnet.d D = x y | x H y H 1 st y 1 st x
Assertion filnetlem3 H = D F Fil X H F × X D DirRel

Proof

Step Hyp Ref Expression
1 filnet.h H = n F n × n
2 filnet.d D = x y | x H y H 1 st y 1 st x
3 dmresi dom I H = H
4 1 2 filnetlem2 I H D D H × H
5 4 simpli I H D
6 dmss I H D dom I H dom D
7 5 6 ax-mp dom I H dom D
8 3 7 eqsstrri H dom D
9 ssun1 dom D dom D ran D
10 8 9 sstri H dom D ran D
11 dmrnssfld dom D ran D D
12 10 11 sstri H D
13 4 simpri D H × H
14 uniss D H × H D H × H
15 uniss D H × H D H × H
16 13 14 15 mp2b D H × H
17 unixpss H × H H H
18 unidm H H = H
19 17 18 sseqtri H × H H
20 16 19 sstri D H
21 12 20 eqssi H = D
22 filelss F Fil X n F n X
23 xpss2 n X n × n n × X
24 22 23 syl F Fil X n F n × n n × X
25 24 ralrimiva F Fil X n F n × n n × X
26 ss2iun n F n × n n × X n F n × n n F n × X
27 25 26 syl F Fil X n F n × n n F n × X
28 iunxpconst n F n × X = F × X
29 27 28 sseqtrdi F Fil X n F n × n F × X
30 1 29 eqsstrid F Fil X H F × X
31 5 a1i F Fil X I H D
32 2 relopabiv Rel D
33 31 32 jctil F Fil X Rel D I H D
34 simpl F Fil X v H z H F Fil X
35 30 adantr F Fil X v H z H H F × X
36 simprl F Fil X v H z H v H
37 35 36 sseldd F Fil X v H z H v F × X
38 xp1st v F × X 1 st v F
39 37 38 syl F Fil X v H z H 1 st v F
40 simprr F Fil X v H z H z H
41 35 40 sseldd F Fil X v H z H z F × X
42 xp1st z F × X 1 st z F
43 41 42 syl F Fil X v H z H 1 st z F
44 filinn0 F Fil X 1 st v F 1 st z F 1 st v 1 st z
45 34 39 43 44 syl3anc F Fil X v H z H 1 st v 1 st z
46 n0 1 st v 1 st z u u 1 st v 1 st z
47 45 46 sylib F Fil X v H z H u u 1 st v 1 st z
48 36 adantr F Fil X v H z H u 1 st v 1 st z v H
49 filin F Fil X 1 st v F 1 st z F 1 st v 1 st z F
50 34 39 43 49 syl3anc F Fil X v H z H 1 st v 1 st z F
51 50 adantr F Fil X v H z H u 1 st v 1 st z 1 st v 1 st z F
52 simpr F Fil X v H z H u 1 st v 1 st z u 1 st v 1 st z
53 id n = 1 st v 1 st z n = 1 st v 1 st z
54 53 opeliunxp2 1 st v 1 st z u n F n × n 1 st v 1 st z F u 1 st v 1 st z
55 51 52 54 sylanbrc F Fil X v H z H u 1 st v 1 st z 1 st v 1 st z u n F n × n
56 55 1 eleqtrrdi F Fil X v H z H u 1 st v 1 st z 1 st v 1 st z u H
57 fvex 1 st v V
58 57 inex1 1 st v 1 st z V
59 vex u V
60 58 59 op1st 1 st 1 st v 1 st z u = 1 st v 1 st z
61 inss1 1 st v 1 st z 1 st v
62 60 61 eqsstri 1 st 1 st v 1 st z u 1 st v
63 vex v V
64 opex 1 st v 1 st z u V
65 1 2 63 64 filnetlem1 v D 1 st v 1 st z u v H 1 st v 1 st z u H 1 st 1 st v 1 st z u 1 st v
66 62 65 mpbiran2 v D 1 st v 1 st z u v H 1 st v 1 st z u H
67 48 56 66 sylanbrc F Fil X v H z H u 1 st v 1 st z v D 1 st v 1 st z u
68 40 adantr F Fil X v H z H u 1 st v 1 st z z H
69 inss2 1 st v 1 st z 1 st z
70 60 69 eqsstri 1 st 1 st v 1 st z u 1 st z
71 vex z V
72 1 2 71 64 filnetlem1 z D 1 st v 1 st z u z H 1 st v 1 st z u H 1 st 1 st v 1 st z u 1 st z
73 70 72 mpbiran2 z D 1 st v 1 st z u z H 1 st v 1 st z u H
74 68 56 73 sylanbrc F Fil X v H z H u 1 st v 1 st z z D 1 st v 1 st z u
75 breq2 w = 1 st v 1 st z u v D w v D 1 st v 1 st z u
76 breq2 w = 1 st v 1 st z u z D w z D 1 st v 1 st z u
77 75 76 anbi12d w = 1 st v 1 st z u v D w z D w v D 1 st v 1 st z u z D 1 st v 1 st z u
78 64 77 spcev v D 1 st v 1 st z u z D 1 st v 1 st z u w v D w z D w
79 67 74 78 syl2anc F Fil X v H z H u 1 st v 1 st z w v D w z D w
80 47 79 exlimddv F Fil X v H z H w v D w z D w
81 80 ralrimivva F Fil X v H z H w v D w z D w
82 codir H × H D -1 D v H z H w v D w z D w
83 81 82 sylibr F Fil X H × H D -1 D
84 vex w V
85 1 2 63 84 filnetlem1 v D w v H w H 1 st w 1 st v
86 85 simplbi v D w v H w H
87 86 simpld v D w v H
88 1 2 84 71 filnetlem1 w D z w H z H 1 st z 1 st w
89 88 simplbi w D z w H z H
90 89 simprd w D z z H
91 87 90 anim12i v D w w D z v H z H
92 88 simprbi w D z 1 st z 1 st w
93 85 simprbi v D w 1 st w 1 st v
94 92 93 sylan9ssr v D w w D z 1 st z 1 st v
95 1 2 63 71 filnetlem1 v D z v H z H 1 st z 1 st v
96 91 94 95 sylanbrc v D w w D z v D z
97 96 ax-gen z v D w w D z v D z
98 97 gen2 v w z v D w w D z v D z
99 cotr D D D v w z v D w w D z v D z
100 98 99 mpbir D D D
101 83 100 jctil F Fil X D D D H × H D -1 D
102 filtop F Fil X X F
103 xpexg F Fil X X F F × X V
104 102 103 mpdan F Fil X F × X V
105 104 30 ssexd F Fil X H V
106 105 105 xpexd F Fil X H × H V
107 ssexg D H × H H × H V D V
108 13 106 107 sylancr F Fil X D V
109 21 isdir D V D DirRel Rel D I H D D D D H × H D -1 D
110 108 109 syl F Fil X D DirRel Rel D I H D D D D H × H D -1 D
111 33 101 110 mpbir2and F Fil X D DirRel
112 30 111 jca F Fil X H F × X D DirRel
113 21 112 pm3.2i H = D F Fil X H F × X D DirRel