Metamath Proof Explorer


Theorem filnetlem4

Description: Lemma for filnet . (Contributed by Jeff Hankins, 15-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H = n F n × n
filnet.d D = x y | x H y H 1 st y 1 st x
Assertion filnetlem4 F Fil X d DirRel f f : dom d X F = X FilMap f ran tail d

Proof

Step Hyp Ref Expression
1 filnet.h H = n F n × n
2 filnet.d D = x y | x H y H 1 st y 1 st x
3 1 2 filnetlem3 H = D F Fil X H F × X D DirRel
4 3 simpri F Fil X H F × X D DirRel
5 4 simprd F Fil X D DirRel
6 f2ndres 2 nd F × X : F × X X
7 4 simpld F Fil X H F × X
8 fssres2 2 nd F × X : F × X X H F × X 2 nd H : H X
9 6 7 8 sylancr F Fil X 2 nd H : H X
10 filtop F Fil X X F
11 xpexg F Fil X X F F × X V
12 10 11 mpdan F Fil X F × X V
13 12 7 ssexd F Fil X H V
14 fex 2 nd H : H X H V 2 nd H V
15 9 13 14 syl2anc F Fil X 2 nd H V
16 3 simpli H = D
17 dirdm D DirRel dom D = D
18 5 17 syl F Fil X dom D = D
19 16 18 eqtr4id F Fil X H = dom D
20 19 feq2d F Fil X 2 nd H : H X 2 nd H : dom D X
21 9 20 mpbid F Fil X 2 nd H : dom D X
22 eqid dom D = dom D
23 22 tailf D DirRel tail D : dom D 𝒫 dom D
24 5 23 syl F Fil X tail D : dom D 𝒫 dom D
25 19 feq2d F Fil X tail D : H 𝒫 dom D tail D : dom D 𝒫 dom D
26 24 25 mpbird F Fil X tail D : H 𝒫 dom D
27 26 adantr F Fil X t X tail D : H 𝒫 dom D
28 ffn tail D : H 𝒫 dom D tail D Fn H
29 imaeq2 d = tail D f 2 nd H d = 2 nd H tail D f
30 29 sseq1d d = tail D f 2 nd H d t 2 nd H tail D f t
31 30 rexrn tail D Fn H d ran tail D 2 nd H d t f H 2 nd H tail D f t
32 27 28 31 3syl F Fil X t X d ran tail D 2 nd H d t f H 2 nd H tail D f t
33 fo2nd 2 nd : V onto V
34 fofn 2 nd : V onto V 2 nd Fn V
35 33 34 ax-mp 2 nd Fn V
36 ssv H V
37 fnssres 2 nd Fn V H V 2 nd H Fn H
38 35 36 37 mp2an 2 nd H Fn H
39 fnfun 2 nd H Fn H Fun 2 nd H
40 38 39 ax-mp Fun 2 nd H
41 27 ffvelrnda F Fil X t X f H tail D f 𝒫 dom D
42 41 elpwid F Fil X t X f H tail D f dom D
43 19 ad2antrr F Fil X t X f H H = dom D
44 42 43 sseqtrrd F Fil X t X f H tail D f H
45 38 fndmi dom 2 nd H = H
46 44 45 sseqtrrdi F Fil X t X f H tail D f dom 2 nd H
47 funimass4 Fun 2 nd H tail D f dom 2 nd H 2 nd H tail D f t d tail D f 2 nd H d t
48 40 46 47 sylancr F Fil X t X f H 2 nd H tail D f t d tail D f 2 nd H d t
49 5 ad2antrr F Fil X t X f H D DirRel
50 simpr F Fil X t X f H f H
51 50 43 eleqtrd F Fil X t X f H f dom D
52 vex d V
53 52 a1i F Fil X t X f H d V
54 22 eltail D DirRel f dom D d V d tail D f f D d
55 49 51 53 54 syl3anc F Fil X t X f H d tail D f f D d
56 50 biantrurd F Fil X t X f H d H f H d H
57 56 anbi1d F Fil X t X f H d H 1 st d 1 st f f H d H 1 st d 1 st f
58 vex f V
59 1 2 58 52 filnetlem1 f D d f H d H 1 st d 1 st f
60 57 59 bitr4di F Fil X t X f H d H 1 st d 1 st f f D d
61 55 60 bitr4d F Fil X t X f H d tail D f d H 1 st d 1 st f
62 61 imbi1d F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd H d t
63 fvres d H 2 nd H d = 2 nd d
64 63 eleq1d d H 2 nd H d t 2 nd d t
65 64 adantr d H 1 st d 1 st f 2 nd H d t 2 nd d t
66 65 pm5.74i d H 1 st d 1 st f 2 nd H d t d H 1 st d 1 st f 2 nd d t
67 impexp d H 1 st d 1 st f 2 nd d t d H 1 st d 1 st f 2 nd d t
68 66 67 bitri d H 1 st d 1 st f 2 nd H d t d H 1 st d 1 st f 2 nd d t
69 62 68 bitrdi F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd d t
70 69 ralbidv2 F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd d t
71 48 70 bitrd F Fil X t X f H 2 nd H tail D f t d H 1 st d 1 st f 2 nd d t
72 71 rexbidva F Fil X t X f H 2 nd H tail D f t f H d H 1 st d 1 st f 2 nd d t
73 vex k V
74 vex v V
75 73 74 op1std d = k v 1 st d = k
76 75 sseq1d d = k v 1 st d 1 st f k 1 st f
77 73 74 op2ndd d = k v 2 nd d = v
78 77 eleq1d d = k v 2 nd d t v t
79 76 78 imbi12d d = k v 1 st d 1 st f 2 nd d t k 1 st f v t
80 79 raliunxp d k F k × k 1 st d 1 st f 2 nd d t k F v k k 1 st f v t
81 sneq n = k n = k
82 id n = k n = k
83 81 82 xpeq12d n = k n × n = k × k
84 83 cbviunv n F n × n = k F k × k
85 1 84 eqtri H = k F k × k
86 85 raleqi d H 1 st d 1 st f 2 nd d t d k F k × k 1 st d 1 st f 2 nd d t
87 dfss3 k t v k v t
88 87 imbi2i k 1 st f k t k 1 st f v k v t
89 r19.21v v k k 1 st f v t k 1 st f v k v t
90 88 89 bitr4i k 1 st f k t v k k 1 st f v t
91 90 ralbii k F k 1 st f k t k F v k k 1 st f v t
92 80 86 91 3bitr4i d H 1 st d 1 st f 2 nd d t k F k 1 st f k t
93 92 rexbii f H d H 1 st d 1 st f 2 nd d t f H k F k 1 st f k t
94 1 rexeqi f H k F k 1 st f k t f n F n × n k F k 1 st f k t
95 vex n V
96 vex m V
97 95 96 op1std f = n m 1 st f = n
98 97 sseq2d f = n m k 1 st f k n
99 98 imbi1d f = n m k 1 st f k t k n k t
100 99 ralbidv f = n m k F k 1 st f k t k F k n k t
101 100 rexiunxp f n F n × n k F k 1 st f k t n F m n k F k n k t
102 93 94 101 3bitri f H d H 1 st d 1 st f 2 nd d t n F m n k F k n k t
103 fileln0 F Fil X n F n
104 103 adantlr F Fil X t X n F n
105 r19.9rzv n k F k n k t m n k F k n k t
106 104 105 syl F Fil X t X n F k F k n k t m n k F k n k t
107 ssid n n
108 sseq1 k = n k n n n
109 sseq1 k = n k t n t
110 108 109 imbi12d k = n k n k t n n n t
111 110 rspcv n F k F k n k t n n n t
112 107 111 mpii n F k F k n k t n t
113 112 adantl F Fil X t X n F k F k n k t n t
114 sstr2 k n n t k t
115 114 com12 n t k n k t
116 115 ralrimivw n t k F k n k t
117 113 116 impbid1 F Fil X t X n F k F k n k t n t
118 106 117 bitr3d F Fil X t X n F m n k F k n k t n t
119 118 rexbidva F Fil X t X n F m n k F k n k t n F n t
120 102 119 syl5bb F Fil X t X f H d H 1 st d 1 st f 2 nd d t n F n t
121 32 72 120 3bitrd F Fil X t X d ran tail D 2 nd H d t n F n t
122 121 pm5.32da F Fil X t X d ran tail D 2 nd H d t t X n F n t
123 filn0 F Fil X F
124 95 snnz n
125 103 124 jctil F Fil X n F n n
126 neanior n n ¬ n = n =
127 125 126 sylib F Fil X n F ¬ n = n =
128 ss0b n × n n × n =
129 xpeq0 n × n = n = n =
130 128 129 bitri n × n n = n =
131 127 130 sylnibr F Fil X n F ¬ n × n
132 131 ralrimiva F Fil X n F ¬ n × n
133 r19.2z F n F ¬ n × n n F ¬ n × n
134 123 132 133 syl2anc F Fil X n F ¬ n × n
135 rexnal n F ¬ n × n ¬ n F n × n
136 134 135 sylib F Fil X ¬ n F n × n
137 1 sseq1i H n F n × n
138 ss0b H H =
139 iunss n F n × n n F n × n
140 137 138 139 3bitr3i H = n F n × n
141 140 necon3abii H ¬ n F n × n
142 136 141 sylibr F Fil X H
143 dmresi dom I H = H
144 1 2 filnetlem2 I H D D H × H
145 144 simpli I H D
146 dmss I H D dom I H dom D
147 145 146 ax-mp dom I H dom D
148 143 147 eqsstrri H dom D
149 144 simpri D H × H
150 dmss D H × H dom D dom H × H
151 149 150 ax-mp dom D dom H × H
152 dmxpid dom H × H = H
153 151 152 sseqtri dom D H
154 148 153 eqssi H = dom D
155 154 tailfb D DirRel H ran tail D fBas H
156 5 142 155 syl2anc F Fil X ran tail D fBas H
157 elfm X F ran tail D fBas H 2 nd H : H X t X FilMap 2 nd H ran tail D t X d ran tail D 2 nd H d t
158 10 156 9 157 syl3anc F Fil X t X FilMap 2 nd H ran tail D t X d ran tail D 2 nd H d t
159 filfbas F Fil X F fBas X
160 elfg F fBas X t X filGen F t X n F n t
161 159 160 syl F Fil X t X filGen F t X n F n t
162 122 158 161 3bitr4d F Fil X t X FilMap 2 nd H ran tail D t X filGen F
163 162 eqrdv F Fil X X FilMap 2 nd H ran tail D = X filGen F
164 fgfil F Fil X X filGen F = F
165 163 164 eqtr2d F Fil X F = X FilMap 2 nd H ran tail D
166 21 165 jca F Fil X 2 nd H : dom D X F = X FilMap 2 nd H ran tail D
167 feq1 f = 2 nd H f : dom D X 2 nd H : dom D X
168 oveq2 f = 2 nd H X FilMap f = X FilMap 2 nd H
169 168 fveq1d f = 2 nd H X FilMap f ran tail D = X FilMap 2 nd H ran tail D
170 169 eqeq2d f = 2 nd H F = X FilMap f ran tail D F = X FilMap 2 nd H ran tail D
171 167 170 anbi12d f = 2 nd H f : dom D X F = X FilMap f ran tail D 2 nd H : dom D X F = X FilMap 2 nd H ran tail D
172 171 spcegv 2 nd H V 2 nd H : dom D X F = X FilMap 2 nd H ran tail D f f : dom D X F = X FilMap f ran tail D
173 15 166 172 sylc F Fil X f f : dom D X F = X FilMap f ran tail D
174 dmeq d = D dom d = dom D
175 174 feq2d d = D f : dom d X f : dom D X
176 fveq2 d = D tail d = tail D
177 176 rneqd d = D ran tail d = ran tail D
178 177 fveq2d d = D X FilMap f ran tail d = X FilMap f ran tail D
179 178 eqeq2d d = D F = X FilMap f ran tail d F = X FilMap f ran tail D
180 175 179 anbi12d d = D f : dom d X F = X FilMap f ran tail d f : dom D X F = X FilMap f ran tail D
181 180 exbidv d = D f f : dom d X F = X FilMap f ran tail d f f : dom D X F = X FilMap f ran tail D
182 181 rspcev D DirRel f f : dom D X F = X FilMap f ran tail D d DirRel f f : dom d X F = X FilMap f ran tail d
183 5 173 182 syl2anc F Fil X d DirRel f f : dom d X F = X FilMap f ran tail d