Metamath Proof Explorer


Theorem filnetlem4

Description: Lemma for filnet . (Contributed by Jeff Hankins, 15-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h H = n F n × n
filnet.d D = x y | x H y H 1 st y 1 st x
Assertion filnetlem4 F Fil X d DirRel f f : dom d X F = X FilMap f ran tail d

Proof

Step Hyp Ref Expression
1 filnet.h H = n F n × n
2 filnet.d D = x y | x H y H 1 st y 1 st x
3 1 2 filnetlem3 H = D F Fil X H F × X D DirRel
4 3 simpri F Fil X H F × X D DirRel
5 4 simprd F Fil X D DirRel
6 f2ndres 2 nd F × X : F × X X
7 4 simpld F Fil X H F × X
8 fssres2 2 nd F × X : F × X X H F × X 2 nd H : H X
9 6 7 8 sylancr F Fil X 2 nd H : H X
10 filtop F Fil X X F
11 xpexg F Fil X X F F × X V
12 10 11 mpdan F Fil X F × X V
13 12 7 ssexd F Fil X H V
14 9 13 fexd F Fil X 2 nd H V
15 3 simpli H = D
16 dirdm D DirRel dom D = D
17 5 16 syl F Fil X dom D = D
18 15 17 eqtr4id F Fil X H = dom D
19 18 feq2d F Fil X 2 nd H : H X 2 nd H : dom D X
20 9 19 mpbid F Fil X 2 nd H : dom D X
21 eqid dom D = dom D
22 21 tailf D DirRel tail D : dom D 𝒫 dom D
23 5 22 syl F Fil X tail D : dom D 𝒫 dom D
24 18 feq2d F Fil X tail D : H 𝒫 dom D tail D : dom D 𝒫 dom D
25 23 24 mpbird F Fil X tail D : H 𝒫 dom D
26 25 adantr F Fil X t X tail D : H 𝒫 dom D
27 ffn tail D : H 𝒫 dom D tail D Fn H
28 imaeq2 d = tail D f 2 nd H d = 2 nd H tail D f
29 28 sseq1d d = tail D f 2 nd H d t 2 nd H tail D f t
30 29 rexrn tail D Fn H d ran tail D 2 nd H d t f H 2 nd H tail D f t
31 26 27 30 3syl F Fil X t X d ran tail D 2 nd H d t f H 2 nd H tail D f t
32 fo2nd 2 nd : V onto V
33 fofn 2 nd : V onto V 2 nd Fn V
34 32 33 ax-mp 2 nd Fn V
35 ssv H V
36 fnssres 2 nd Fn V H V 2 nd H Fn H
37 34 35 36 mp2an 2 nd H Fn H
38 fnfun 2 nd H Fn H Fun 2 nd H
39 37 38 ax-mp Fun 2 nd H
40 26 ffvelrnda F Fil X t X f H tail D f 𝒫 dom D
41 40 elpwid F Fil X t X f H tail D f dom D
42 18 ad2antrr F Fil X t X f H H = dom D
43 41 42 sseqtrrd F Fil X t X f H tail D f H
44 37 fndmi dom 2 nd H = H
45 43 44 sseqtrrdi F Fil X t X f H tail D f dom 2 nd H
46 funimass4 Fun 2 nd H tail D f dom 2 nd H 2 nd H tail D f t d tail D f 2 nd H d t
47 39 45 46 sylancr F Fil X t X f H 2 nd H tail D f t d tail D f 2 nd H d t
48 5 ad2antrr F Fil X t X f H D DirRel
49 simpr F Fil X t X f H f H
50 49 42 eleqtrd F Fil X t X f H f dom D
51 vex d V
52 51 a1i F Fil X t X f H d V
53 21 eltail D DirRel f dom D d V d tail D f f D d
54 48 50 52 53 syl3anc F Fil X t X f H d tail D f f D d
55 49 biantrurd F Fil X t X f H d H f H d H
56 55 anbi1d F Fil X t X f H d H 1 st d 1 st f f H d H 1 st d 1 st f
57 vex f V
58 1 2 57 51 filnetlem1 f D d f H d H 1 st d 1 st f
59 56 58 bitr4di F Fil X t X f H d H 1 st d 1 st f f D d
60 54 59 bitr4d F Fil X t X f H d tail D f d H 1 st d 1 st f
61 60 imbi1d F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd H d t
62 fvres d H 2 nd H d = 2 nd d
63 62 eleq1d d H 2 nd H d t 2 nd d t
64 63 adantr d H 1 st d 1 st f 2 nd H d t 2 nd d t
65 64 pm5.74i d H 1 st d 1 st f 2 nd H d t d H 1 st d 1 st f 2 nd d t
66 impexp d H 1 st d 1 st f 2 nd d t d H 1 st d 1 st f 2 nd d t
67 65 66 bitri d H 1 st d 1 st f 2 nd H d t d H 1 st d 1 st f 2 nd d t
68 61 67 bitrdi F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd d t
69 68 ralbidv2 F Fil X t X f H d tail D f 2 nd H d t d H 1 st d 1 st f 2 nd d t
70 47 69 bitrd F Fil X t X f H 2 nd H tail D f t d H 1 st d 1 st f 2 nd d t
71 70 rexbidva F Fil X t X f H 2 nd H tail D f t f H d H 1 st d 1 st f 2 nd d t
72 vex k V
73 vex v V
74 72 73 op1std d = k v 1 st d = k
75 74 sseq1d d = k v 1 st d 1 st f k 1 st f
76 72 73 op2ndd d = k v 2 nd d = v
77 76 eleq1d d = k v 2 nd d t v t
78 75 77 imbi12d d = k v 1 st d 1 st f 2 nd d t k 1 st f v t
79 78 raliunxp d k F k × k 1 st d 1 st f 2 nd d t k F v k k 1 st f v t
80 sneq n = k n = k
81 id n = k n = k
82 80 81 xpeq12d n = k n × n = k × k
83 82 cbviunv n F n × n = k F k × k
84 1 83 eqtri H = k F k × k
85 84 raleqi d H 1 st d 1 st f 2 nd d t d k F k × k 1 st d 1 st f 2 nd d t
86 dfss3 k t v k v t
87 86 imbi2i k 1 st f k t k 1 st f v k v t
88 r19.21v v k k 1 st f v t k 1 st f v k v t
89 87 88 bitr4i k 1 st f k t v k k 1 st f v t
90 89 ralbii k F k 1 st f k t k F v k k 1 st f v t
91 79 85 90 3bitr4i d H 1 st d 1 st f 2 nd d t k F k 1 st f k t
92 91 rexbii f H d H 1 st d 1 st f 2 nd d t f H k F k 1 st f k t
93 1 rexeqi f H k F k 1 st f k t f n F n × n k F k 1 st f k t
94 vex n V
95 vex m V
96 94 95 op1std f = n m 1 st f = n
97 96 sseq2d f = n m k 1 st f k n
98 97 imbi1d f = n m k 1 st f k t k n k t
99 98 ralbidv f = n m k F k 1 st f k t k F k n k t
100 99 rexiunxp f n F n × n k F k 1 st f k t n F m n k F k n k t
101 92 93 100 3bitri f H d H 1 st d 1 st f 2 nd d t n F m n k F k n k t
102 fileln0 F Fil X n F n
103 102 adantlr F Fil X t X n F n
104 r19.9rzv n k F k n k t m n k F k n k t
105 103 104 syl F Fil X t X n F k F k n k t m n k F k n k t
106 ssid n n
107 sseq1 k = n k n n n
108 sseq1 k = n k t n t
109 107 108 imbi12d k = n k n k t n n n t
110 109 rspcv n F k F k n k t n n n t
111 106 110 mpii n F k F k n k t n t
112 111 adantl F Fil X t X n F k F k n k t n t
113 sstr2 k n n t k t
114 113 com12 n t k n k t
115 114 ralrimivw n t k F k n k t
116 112 115 impbid1 F Fil X t X n F k F k n k t n t
117 105 116 bitr3d F Fil X t X n F m n k F k n k t n t
118 117 rexbidva F Fil X t X n F m n k F k n k t n F n t
119 101 118 syl5bb F Fil X t X f H d H 1 st d 1 st f 2 nd d t n F n t
120 31 71 119 3bitrd F Fil X t X d ran tail D 2 nd H d t n F n t
121 120 pm5.32da F Fil X t X d ran tail D 2 nd H d t t X n F n t
122 filn0 F Fil X F
123 94 snnz n
124 102 123 jctil F Fil X n F n n
125 neanior n n ¬ n = n =
126 124 125 sylib F Fil X n F ¬ n = n =
127 ss0b n × n n × n =
128 xpeq0 n × n = n = n =
129 127 128 bitri n × n n = n =
130 126 129 sylnibr F Fil X n F ¬ n × n
131 130 ralrimiva F Fil X n F ¬ n × n
132 r19.2z F n F ¬ n × n n F ¬ n × n
133 122 131 132 syl2anc F Fil X n F ¬ n × n
134 rexnal n F ¬ n × n ¬ n F n × n
135 133 134 sylib F Fil X ¬ n F n × n
136 1 sseq1i H n F n × n
137 ss0b H H =
138 iunss n F n × n n F n × n
139 136 137 138 3bitr3i H = n F n × n
140 139 necon3abii H ¬ n F n × n
141 135 140 sylibr F Fil X H
142 dmresi dom I H = H
143 1 2 filnetlem2 I H D D H × H
144 143 simpli I H D
145 dmss I H D dom I H dom D
146 144 145 ax-mp dom I H dom D
147 142 146 eqsstrri H dom D
148 143 simpri D H × H
149 dmss D H × H dom D dom H × H
150 148 149 ax-mp dom D dom H × H
151 dmxpid dom H × H = H
152 150 151 sseqtri dom D H
153 147 152 eqssi H = dom D
154 153 tailfb D DirRel H ran tail D fBas H
155 5 141 154 syl2anc F Fil X ran tail D fBas H
156 elfm X F ran tail D fBas H 2 nd H : H X t X FilMap 2 nd H ran tail D t X d ran tail D 2 nd H d t
157 10 155 9 156 syl3anc F Fil X t X FilMap 2 nd H ran tail D t X d ran tail D 2 nd H d t
158 filfbas F Fil X F fBas X
159 elfg F fBas X t X filGen F t X n F n t
160 158 159 syl F Fil X t X filGen F t X n F n t
161 121 157 160 3bitr4d F Fil X t X FilMap 2 nd H ran tail D t X filGen F
162 161 eqrdv F Fil X X FilMap 2 nd H ran tail D = X filGen F
163 fgfil F Fil X X filGen F = F
164 162 163 eqtr2d F Fil X F = X FilMap 2 nd H ran tail D
165 20 164 jca F Fil X 2 nd H : dom D X F = X FilMap 2 nd H ran tail D
166 feq1 f = 2 nd H f : dom D X 2 nd H : dom D X
167 oveq2 f = 2 nd H X FilMap f = X FilMap 2 nd H
168 167 fveq1d f = 2 nd H X FilMap f ran tail D = X FilMap 2 nd H ran tail D
169 168 eqeq2d f = 2 nd H F = X FilMap f ran tail D F = X FilMap 2 nd H ran tail D
170 166 169 anbi12d f = 2 nd H f : dom D X F = X FilMap f ran tail D 2 nd H : dom D X F = X FilMap 2 nd H ran tail D
171 170 spcegv 2 nd H V 2 nd H : dom D X F = X FilMap 2 nd H ran tail D f f : dom D X F = X FilMap f ran tail D
172 14 165 171 sylc F Fil X f f : dom D X F = X FilMap f ran tail D
173 dmeq d = D dom d = dom D
174 173 feq2d d = D f : dom d X f : dom D X
175 fveq2 d = D tail d = tail D
176 175 rneqd d = D ran tail d = ran tail D
177 176 fveq2d d = D X FilMap f ran tail d = X FilMap f ran tail D
178 177 eqeq2d d = D F = X FilMap f ran tail d F = X FilMap f ran tail D
179 174 178 anbi12d d = D f : dom d X F = X FilMap f ran tail d f : dom D X F = X FilMap f ran tail D
180 179 exbidv d = D f f : dom d X F = X FilMap f ran tail d f f : dom D X F = X FilMap f ran tail D
181 180 rspcev D DirRel f f : dom D X F = X FilMap f ran tail D d DirRel f f : dom d X F = X FilMap f ran tail d
182 5 172 181 syl2anc F Fil X d DirRel f f : dom d X F = X FilMap f ran tail d