Metamath Proof Explorer


Theorem fgfil

Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgfil FFilXXfilGenF=F

Proof

Step Hyp Ref Expression
1 filfbas FFilXFfBasX
2 elfg FfBasXtXfilGenFtXxFxt
3 1 2 syl FFilXtXfilGenFtXxFxt
4 filss FFilXxFtXxttF
5 4 3exp2 FFilXxFtXxttF
6 5 com34 FFilXxFxttXtF
7 6 rexlimdv FFilXxFxttXtF
8 7 impcomd FFilXtXxFxttF
9 3 8 sylbid FFilXtXfilGenFtF
10 9 ssrdv FFilXXfilGenFF
11 ssfg FfBasXFXfilGenF
12 1 11 syl FFilXFXfilGenF
13 10 12 eqssd FFilXXfilGenF=F