Metamath Proof Explorer


Theorem filnetlem4

Description: Lemma for filnet . (Contributed by Jeff Hankins, 15-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Hypotheses filnet.h 𝐻 = 𝑛𝐹 ( { 𝑛 } × 𝑛 )
filnet.d 𝐷 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ( 1st𝑦 ) ⊆ ( 1st𝑥 ) ) }
Assertion filnetlem4 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑑 ∈ DirRel ∃ 𝑓 ( 𝑓 : dom 𝑑𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝑑 ) ) ) )

Proof

Step Hyp Ref Expression
1 filnet.h 𝐻 = 𝑛𝐹 ( { 𝑛 } × 𝑛 )
2 filnet.d 𝐷 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐻𝑦𝐻 ) ∧ ( 1st𝑦 ) ⊆ ( 1st𝑥 ) ) }
3 1 2 filnetlem3 ( 𝐻 = 𝐷 ∧ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐻 ⊆ ( 𝐹 × 𝑋 ) ∧ 𝐷 ∈ DirRel ) ) )
4 3 simpri ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐻 ⊆ ( 𝐹 × 𝑋 ) ∧ 𝐷 ∈ DirRel ) )
5 4 simprd ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐷 ∈ DirRel )
6 f2ndres ( 2nd ↾ ( 𝐹 × 𝑋 ) ) : ( 𝐹 × 𝑋 ) ⟶ 𝑋
7 4 simpld ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐻 ⊆ ( 𝐹 × 𝑋 ) )
8 fssres2 ( ( ( 2nd ↾ ( 𝐹 × 𝑋 ) ) : ( 𝐹 × 𝑋 ) ⟶ 𝑋𝐻 ⊆ ( 𝐹 × 𝑋 ) ) → ( 2nd𝐻 ) : 𝐻𝑋 )
9 6 7 8 sylancr ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 2nd𝐻 ) : 𝐻𝑋 )
10 filtop ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋𝐹 )
11 xpexg ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑋𝐹 ) → ( 𝐹 × 𝑋 ) ∈ V )
12 10 11 mpdan ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 × 𝑋 ) ∈ V )
13 12 7 ssexd ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐻 ∈ V )
14 fex ( ( ( 2nd𝐻 ) : 𝐻𝑋𝐻 ∈ V ) → ( 2nd𝐻 ) ∈ V )
15 9 13 14 syl2anc ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 2nd𝐻 ) ∈ V )
16 3 simpli 𝐻 = 𝐷
17 dirdm ( 𝐷 ∈ DirRel → dom 𝐷 = 𝐷 )
18 5 17 syl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → dom 𝐷 = 𝐷 )
19 16 18 eqtr4id ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐻 = dom 𝐷 )
20 19 feq2d ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 2nd𝐻 ) : 𝐻𝑋 ↔ ( 2nd𝐻 ) : dom 𝐷𝑋 ) )
21 9 20 mpbid ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 2nd𝐻 ) : dom 𝐷𝑋 )
22 eqid dom 𝐷 = dom 𝐷
23 22 tailf ( 𝐷 ∈ DirRel → ( tail ‘ 𝐷 ) : dom 𝐷 ⟶ 𝒫 dom 𝐷 )
24 5 23 syl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( tail ‘ 𝐷 ) : dom 𝐷 ⟶ 𝒫 dom 𝐷 )
25 19 feq2d ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( tail ‘ 𝐷 ) : 𝐻 ⟶ 𝒫 dom 𝐷 ↔ ( tail ‘ 𝐷 ) : dom 𝐷 ⟶ 𝒫 dom 𝐷 ) )
26 24 25 mpbird ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( tail ‘ 𝐷 ) : 𝐻 ⟶ 𝒫 dom 𝐷 )
27 26 adantr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) → ( tail ‘ 𝐷 ) : 𝐻 ⟶ 𝒫 dom 𝐷 )
28 ffn ( ( tail ‘ 𝐷 ) : 𝐻 ⟶ 𝒫 dom 𝐷 → ( tail ‘ 𝐷 ) Fn 𝐻 )
29 imaeq2 ( 𝑑 = ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) → ( ( 2nd𝐻 ) “ 𝑑 ) = ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) )
30 29 sseq1d ( 𝑑 = ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) → ( ( ( 2nd𝐻 ) “ 𝑑 ) ⊆ 𝑡 ↔ ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) ⊆ 𝑡 ) )
31 30 rexrn ( ( tail ‘ 𝐷 ) Fn 𝐻 → ( ∃ 𝑑 ∈ ran ( tail ‘ 𝐷 ) ( ( 2nd𝐻 ) “ 𝑑 ) ⊆ 𝑡 ↔ ∃ 𝑓𝐻 ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) ⊆ 𝑡 ) )
32 27 28 31 3syl ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) → ( ∃ 𝑑 ∈ ran ( tail ‘ 𝐷 ) ( ( 2nd𝐻 ) “ 𝑑 ) ⊆ 𝑡 ↔ ∃ 𝑓𝐻 ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) ⊆ 𝑡 ) )
33 fo2nd 2nd : V –onto→ V
34 fofn ( 2nd : V –onto→ V → 2nd Fn V )
35 33 34 ax-mp 2nd Fn V
36 ssv 𝐻 ⊆ V
37 fnssres ( ( 2nd Fn V ∧ 𝐻 ⊆ V ) → ( 2nd𝐻 ) Fn 𝐻 )
38 35 36 37 mp2an ( 2nd𝐻 ) Fn 𝐻
39 fnfun ( ( 2nd𝐻 ) Fn 𝐻 → Fun ( 2nd𝐻 ) )
40 38 39 ax-mp Fun ( 2nd𝐻 )
41 27 ffvelrnda ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ∈ 𝒫 dom 𝐷 )
42 41 elpwid ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ⊆ dom 𝐷 )
43 19 ad2antrr ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → 𝐻 = dom 𝐷 )
44 42 43 sseqtrrd ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ⊆ 𝐻 )
45 38 fndmi dom ( 2nd𝐻 ) = 𝐻
46 44 45 sseqtrrdi ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ⊆ dom ( 2nd𝐻 ) )
47 funimass4 ( ( Fun ( 2nd𝐻 ) ∧ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ⊆ dom ( 2nd𝐻 ) ) → ( ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) ⊆ 𝑡 ↔ ∀ 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ) )
48 40 46 47 sylancr ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) ⊆ 𝑡 ↔ ∀ 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ) )
49 5 ad2antrr ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → 𝐷 ∈ DirRel )
50 simpr ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → 𝑓𝐻 )
51 50 43 eleqtrd ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → 𝑓 ∈ dom 𝐷 )
52 vex 𝑑 ∈ V
53 52 a1i ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → 𝑑 ∈ V )
54 22 eltail ( ( 𝐷 ∈ DirRel ∧ 𝑓 ∈ dom 𝐷𝑑 ∈ V ) → ( 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ↔ 𝑓 𝐷 𝑑 ) )
55 49 51 53 54 syl3anc ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ↔ 𝑓 𝐷 𝑑 ) )
56 50 biantrurd ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( 𝑑𝐻 ↔ ( 𝑓𝐻𝑑𝐻 ) ) )
57 56 anbi1d ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) ↔ ( ( 𝑓𝐻𝑑𝐻 ) ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) ) )
58 vex 𝑓 ∈ V
59 1 2 58 52 filnetlem1 ( 𝑓 𝐷 𝑑 ↔ ( ( 𝑓𝐻𝑑𝐻 ) ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) )
60 57 59 bitr4di ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) ↔ 𝑓 𝐷 𝑑 ) )
61 55 60 bitr4d ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ↔ ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) ) )
62 61 imbi1d ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) → ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ) ↔ ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) → ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ) ) )
63 fvres ( 𝑑𝐻 → ( ( 2nd𝐻 ) ‘ 𝑑 ) = ( 2nd𝑑 ) )
64 63 eleq1d ( 𝑑𝐻 → ( ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ↔ ( 2nd𝑑 ) ∈ 𝑡 ) )
65 64 adantr ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) → ( ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ↔ ( 2nd𝑑 ) ∈ 𝑡 ) )
66 65 pm5.74i ( ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) → ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ) ↔ ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) → ( 2nd𝑑 ) ∈ 𝑡 ) )
67 impexp ( ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ( 𝑑𝐻 → ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ) )
68 66 67 bitri ( ( ( 𝑑𝐻 ∧ ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ) → ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ) ↔ ( 𝑑𝐻 → ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ) )
69 62 68 bitrdi ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) → ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ) ↔ ( 𝑑𝐻 → ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ) ) )
70 69 ralbidv2 ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ∀ 𝑑 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ( ( 2nd𝐻 ) ‘ 𝑑 ) ∈ 𝑡 ↔ ∀ 𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ) )
71 48 70 bitrd ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑓𝐻 ) → ( ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) ⊆ 𝑡 ↔ ∀ 𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ) )
72 71 rexbidva ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) → ( ∃ 𝑓𝐻 ( ( 2nd𝐻 ) “ ( ( tail ‘ 𝐷 ) ‘ 𝑓 ) ) ⊆ 𝑡 ↔ ∃ 𝑓𝐻𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ) )
73 vex 𝑘 ∈ V
74 vex 𝑣 ∈ V
75 73 74 op1std ( 𝑑 = ⟨ 𝑘 , 𝑣 ⟩ → ( 1st𝑑 ) = 𝑘 )
76 75 sseq1d ( 𝑑 = ⟨ 𝑘 , 𝑣 ⟩ → ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) ↔ 𝑘 ⊆ ( 1st𝑓 ) ) )
77 73 74 op2ndd ( 𝑑 = ⟨ 𝑘 , 𝑣 ⟩ → ( 2nd𝑑 ) = 𝑣 )
78 77 eleq1d ( 𝑑 = ⟨ 𝑘 , 𝑣 ⟩ → ( ( 2nd𝑑 ) ∈ 𝑡𝑣𝑡 ) )
79 76 78 imbi12d ( 𝑑 = ⟨ 𝑘 , 𝑣 ⟩ → ( ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑣𝑡 ) ) )
80 79 raliunxp ( ∀ 𝑑 𝑘𝐹 ( { 𝑘 } × 𝑘 ) ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ∀ 𝑘𝐹𝑣𝑘 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑣𝑡 ) )
81 sneq ( 𝑛 = 𝑘 → { 𝑛 } = { 𝑘 } )
82 id ( 𝑛 = 𝑘𝑛 = 𝑘 )
83 81 82 xpeq12d ( 𝑛 = 𝑘 → ( { 𝑛 } × 𝑛 ) = ( { 𝑘 } × 𝑘 ) )
84 83 cbviunv 𝑛𝐹 ( { 𝑛 } × 𝑛 ) = 𝑘𝐹 ( { 𝑘 } × 𝑘 )
85 1 84 eqtri 𝐻 = 𝑘𝐹 ( { 𝑘 } × 𝑘 )
86 85 raleqi ( ∀ 𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ∀ 𝑑 𝑘𝐹 ( { 𝑘 } × 𝑘 ) ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) )
87 dfss3 ( 𝑘𝑡 ↔ ∀ 𝑣𝑘 𝑣𝑡 )
88 87 imbi2i ( ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) ↔ ( 𝑘 ⊆ ( 1st𝑓 ) → ∀ 𝑣𝑘 𝑣𝑡 ) )
89 r19.21v ( ∀ 𝑣𝑘 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑣𝑡 ) ↔ ( 𝑘 ⊆ ( 1st𝑓 ) → ∀ 𝑣𝑘 𝑣𝑡 ) )
90 88 89 bitr4i ( ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) ↔ ∀ 𝑣𝑘 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑣𝑡 ) )
91 90 ralbii ( ∀ 𝑘𝐹 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) ↔ ∀ 𝑘𝐹𝑣𝑘 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑣𝑡 ) )
92 80 86 91 3bitr4i ( ∀ 𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ∀ 𝑘𝐹 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) )
93 92 rexbii ( ∃ 𝑓𝐻𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ∃ 𝑓𝐻𝑘𝐹 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) )
94 1 rexeqi ( ∃ 𝑓𝐻𝑘𝐹 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) ↔ ∃ 𝑓 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ∀ 𝑘𝐹 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) )
95 vex 𝑛 ∈ V
96 vex 𝑚 ∈ V
97 95 96 op1std ( 𝑓 = ⟨ 𝑛 , 𝑚 ⟩ → ( 1st𝑓 ) = 𝑛 )
98 97 sseq2d ( 𝑓 = ⟨ 𝑛 , 𝑚 ⟩ → ( 𝑘 ⊆ ( 1st𝑓 ) ↔ 𝑘𝑛 ) )
99 98 imbi1d ( 𝑓 = ⟨ 𝑛 , 𝑚 ⟩ → ( ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) ↔ ( 𝑘𝑛𝑘𝑡 ) ) )
100 99 ralbidv ( 𝑓 = ⟨ 𝑛 , 𝑚 ⟩ → ( ∀ 𝑘𝐹 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) ↔ ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ) )
101 100 rexiunxp ( ∃ 𝑓 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ∀ 𝑘𝐹 ( 𝑘 ⊆ ( 1st𝑓 ) → 𝑘𝑡 ) ↔ ∃ 𝑛𝐹𝑚𝑛𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) )
102 93 94 101 3bitri ( ∃ 𝑓𝐻𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ∃ 𝑛𝐹𝑚𝑛𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) )
103 fileln0 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑛𝐹 ) → 𝑛 ≠ ∅ )
104 103 adantlr ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑛𝐹 ) → 𝑛 ≠ ∅ )
105 r19.9rzv ( 𝑛 ≠ ∅ → ( ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ↔ ∃ 𝑚𝑛𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ) )
106 104 105 syl ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑛𝐹 ) → ( ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ↔ ∃ 𝑚𝑛𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ) )
107 ssid 𝑛𝑛
108 sseq1 ( 𝑘 = 𝑛 → ( 𝑘𝑛𝑛𝑛 ) )
109 sseq1 ( 𝑘 = 𝑛 → ( 𝑘𝑡𝑛𝑡 ) )
110 108 109 imbi12d ( 𝑘 = 𝑛 → ( ( 𝑘𝑛𝑘𝑡 ) ↔ ( 𝑛𝑛𝑛𝑡 ) ) )
111 110 rspcv ( 𝑛𝐹 → ( ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) → ( 𝑛𝑛𝑛𝑡 ) ) )
112 107 111 mpii ( 𝑛𝐹 → ( ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) → 𝑛𝑡 ) )
113 112 adantl ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑛𝐹 ) → ( ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) → 𝑛𝑡 ) )
114 sstr2 ( 𝑘𝑛 → ( 𝑛𝑡𝑘𝑡 ) )
115 114 com12 ( 𝑛𝑡 → ( 𝑘𝑛𝑘𝑡 ) )
116 115 ralrimivw ( 𝑛𝑡 → ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) )
117 113 116 impbid1 ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑛𝐹 ) → ( ∀ 𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ↔ 𝑛𝑡 ) )
118 106 117 bitr3d ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ 𝑛𝐹 ) → ( ∃ 𝑚𝑛𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ↔ 𝑛𝑡 ) )
119 118 rexbidva ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) → ( ∃ 𝑛𝐹𝑚𝑛𝑘𝐹 ( 𝑘𝑛𝑘𝑡 ) ↔ ∃ 𝑛𝐹 𝑛𝑡 ) )
120 102 119 syl5bb ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) → ( ∃ 𝑓𝐻𝑑𝐻 ( ( 1st𝑑 ) ⊆ ( 1st𝑓 ) → ( 2nd𝑑 ) ∈ 𝑡 ) ↔ ∃ 𝑛𝐹 𝑛𝑡 ) )
121 32 72 120 3bitrd ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑡𝑋 ) → ( ∃ 𝑑 ∈ ran ( tail ‘ 𝐷 ) ( ( 2nd𝐻 ) “ 𝑑 ) ⊆ 𝑡 ↔ ∃ 𝑛𝐹 𝑛𝑡 ) )
122 121 pm5.32da ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑡𝑋 ∧ ∃ 𝑑 ∈ ran ( tail ‘ 𝐷 ) ( ( 2nd𝐻 ) “ 𝑑 ) ⊆ 𝑡 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑛𝐹 𝑛𝑡 ) ) )
123 filn0 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ )
124 95 snnz { 𝑛 } ≠ ∅
125 103 124 jctil ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑛𝐹 ) → ( { 𝑛 } ≠ ∅ ∧ 𝑛 ≠ ∅ ) )
126 neanior ( ( { 𝑛 } ≠ ∅ ∧ 𝑛 ≠ ∅ ) ↔ ¬ ( { 𝑛 } = ∅ ∨ 𝑛 = ∅ ) )
127 125 126 sylib ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑛𝐹 ) → ¬ ( { 𝑛 } = ∅ ∨ 𝑛 = ∅ ) )
128 ss0b ( ( { 𝑛 } × 𝑛 ) ⊆ ∅ ↔ ( { 𝑛 } × 𝑛 ) = ∅ )
129 xpeq0 ( ( { 𝑛 } × 𝑛 ) = ∅ ↔ ( { 𝑛 } = ∅ ∨ 𝑛 = ∅ ) )
130 128 129 bitri ( ( { 𝑛 } × 𝑛 ) ⊆ ∅ ↔ ( { 𝑛 } = ∅ ∨ 𝑛 = ∅ ) )
131 127 130 sylnibr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑛𝐹 ) → ¬ ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
132 131 ralrimiva ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑛𝐹 ¬ ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
133 r19.2z ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑛𝐹 ¬ ( { 𝑛 } × 𝑛 ) ⊆ ∅ ) → ∃ 𝑛𝐹 ¬ ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
134 123 132 133 syl2anc ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑛𝐹 ¬ ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
135 rexnal ( ∃ 𝑛𝐹 ¬ ( { 𝑛 } × 𝑛 ) ⊆ ∅ ↔ ¬ ∀ 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
136 134 135 sylib ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∀ 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
137 1 sseq1i ( 𝐻 ⊆ ∅ ↔ 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
138 ss0b ( 𝐻 ⊆ ∅ ↔ 𝐻 = ∅ )
139 iunss ( 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ⊆ ∅ ↔ ∀ 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
140 137 138 139 3bitr3i ( 𝐻 = ∅ ↔ ∀ 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
141 140 necon3abii ( 𝐻 ≠ ∅ ↔ ¬ ∀ 𝑛𝐹 ( { 𝑛 } × 𝑛 ) ⊆ ∅ )
142 136 141 sylibr ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐻 ≠ ∅ )
143 dmresi dom ( I ↾ 𝐻 ) = 𝐻
144 1 2 filnetlem2 ( ( I ↾ 𝐻 ) ⊆ 𝐷𝐷 ⊆ ( 𝐻 × 𝐻 ) )
145 144 simpli ( I ↾ 𝐻 ) ⊆ 𝐷
146 dmss ( ( I ↾ 𝐻 ) ⊆ 𝐷 → dom ( I ↾ 𝐻 ) ⊆ dom 𝐷 )
147 145 146 ax-mp dom ( I ↾ 𝐻 ) ⊆ dom 𝐷
148 143 147 eqsstrri 𝐻 ⊆ dom 𝐷
149 144 simpri 𝐷 ⊆ ( 𝐻 × 𝐻 )
150 dmss ( 𝐷 ⊆ ( 𝐻 × 𝐻 ) → dom 𝐷 ⊆ dom ( 𝐻 × 𝐻 ) )
151 149 150 ax-mp dom 𝐷 ⊆ dom ( 𝐻 × 𝐻 )
152 dmxpid dom ( 𝐻 × 𝐻 ) = 𝐻
153 151 152 sseqtri dom 𝐷𝐻
154 148 153 eqssi 𝐻 = dom 𝐷
155 154 tailfb ( ( 𝐷 ∈ DirRel ∧ 𝐻 ≠ ∅ ) → ran ( tail ‘ 𝐷 ) ∈ ( fBas ‘ 𝐻 ) )
156 5 142 155 syl2anc ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ran ( tail ‘ 𝐷 ) ∈ ( fBas ‘ 𝐻 ) )
157 elfm ( ( 𝑋𝐹 ∧ ran ( tail ‘ 𝐷 ) ∈ ( fBas ‘ 𝐻 ) ∧ ( 2nd𝐻 ) : 𝐻𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑑 ∈ ran ( tail ‘ 𝐷 ) ( ( 2nd𝐻 ) “ 𝑑 ) ⊆ 𝑡 ) ) )
158 10 156 9 157 syl3anc ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑑 ∈ ran ( tail ‘ 𝐷 ) ( ( 2nd𝐻 ) “ 𝑑 ) ⊆ 𝑡 ) ) )
159 filfbas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
160 elfg ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑛𝐹 𝑛𝑡 ) ) )
161 159 160 syl ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡𝑋 ∧ ∃ 𝑛𝐹 𝑛𝑡 ) ) )
162 122 158 161 3bitr4d ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) ↔ 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ) )
163 162 eqrdv ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) = ( 𝑋 filGen 𝐹 ) )
164 fgfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 )
165 163 164 eqtr2d ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 = ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) )
166 21 165 jca ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 2nd𝐻 ) : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) ) )
167 feq1 ( 𝑓 = ( 2nd𝐻 ) → ( 𝑓 : dom 𝐷𝑋 ↔ ( 2nd𝐻 ) : dom 𝐷𝑋 ) )
168 oveq2 ( 𝑓 = ( 2nd𝐻 ) → ( 𝑋 FilMap 𝑓 ) = ( 𝑋 FilMap ( 2nd𝐻 ) ) )
169 168 fveq1d ( 𝑓 = ( 2nd𝐻 ) → ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) = ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) )
170 169 eqeq2d ( 𝑓 = ( 2nd𝐻 ) → ( 𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ↔ 𝐹 = ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) ) )
171 167 170 anbi12d ( 𝑓 = ( 2nd𝐻 ) → ( ( 𝑓 : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ) ↔ ( ( 2nd𝐻 ) : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) ) ) )
172 171 spcegv ( ( 2nd𝐻 ) ∈ V → ( ( ( 2nd𝐻 ) : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap ( 2nd𝐻 ) ) ‘ ran ( tail ‘ 𝐷 ) ) ) → ∃ 𝑓 ( 𝑓 : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ) ) )
173 15 166 172 sylc ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ( 𝑓 : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ) )
174 dmeq ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 )
175 174 feq2d ( 𝑑 = 𝐷 → ( 𝑓 : dom 𝑑𝑋𝑓 : dom 𝐷𝑋 ) )
176 fveq2 ( 𝑑 = 𝐷 → ( tail ‘ 𝑑 ) = ( tail ‘ 𝐷 ) )
177 176 rneqd ( 𝑑 = 𝐷 → ran ( tail ‘ 𝑑 ) = ran ( tail ‘ 𝐷 ) )
178 177 fveq2d ( 𝑑 = 𝐷 → ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝑑 ) ) = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) )
179 178 eqeq2d ( 𝑑 = 𝐷 → ( 𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝑑 ) ) ↔ 𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ) )
180 175 179 anbi12d ( 𝑑 = 𝐷 → ( ( 𝑓 : dom 𝑑𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝑑 ) ) ) ↔ ( 𝑓 : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ) ) )
181 180 exbidv ( 𝑑 = 𝐷 → ( ∃ 𝑓 ( 𝑓 : dom 𝑑𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝑑 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ) ) )
182 181 rspcev ( ( 𝐷 ∈ DirRel ∧ ∃ 𝑓 ( 𝑓 : dom 𝐷𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝐷 ) ) ) ) → ∃ 𝑑 ∈ DirRel ∃ 𝑓 ( 𝑓 : dom 𝑑𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝑑 ) ) ) )
183 5 173 182 syl2anc ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑑 ∈ DirRel ∃ 𝑓 ( 𝑓 : dom 𝑑𝑋𝐹 = ( ( 𝑋 FilMap 𝑓 ) ‘ ran ( tail ‘ 𝑑 ) ) ) )