Metamath Proof Explorer


Theorem eltail

Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Hypothesis tailfval.1 𝑋 = dom 𝐷
Assertion eltail ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶 ) → ( 𝐵 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐴 𝐷 𝐵 ) )

Proof

Step Hyp Ref Expression
1 tailfval.1 𝑋 = dom 𝐷
2 1 tailval ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) )
3 2 eleq2d ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋 ) → ( 𝐵 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ) )
4 3 3adant3 ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶 ) → ( 𝐵 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ) )
5 elimasng ( ( 𝐴𝑋𝐵𝐶 ) → ( 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐷 ) )
6 df-br ( 𝐴 𝐷 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐷 )
7 5 6 bitr4di ( ( 𝐴𝑋𝐵𝐶 ) → ( 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝐵 ) )
8 7 3adant1 ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶 ) → ( 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝐵 ) )
9 4 8 bitrd ( ( 𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶 ) → ( 𝐵 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐴 𝐷 𝐵 ) )