Step |
Hyp |
Ref |
Expression |
1 |
|
tailfval.1 |
⊢ 𝑋 = dom 𝐷 |
2 |
1
|
tailval |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) = ( 𝐷 “ { 𝐴 } ) ) |
3 |
2
|
eleq2d |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐵 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ) ) |
5 |
|
elimasng |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐷 ) ) |
6 |
|
df-br |
⊢ ( 𝐴 𝐷 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐷 ) |
7 |
5 6
|
bitr4di |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝐵 ) ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐵 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝐵 ) ) |
9 |
4 8
|
bitrd |
⊢ ( ( 𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐵 ∈ ( ( tail ‘ 𝐷 ) ‘ 𝐴 ) ↔ 𝐴 𝐷 𝐵 ) ) |