Metamath Proof Explorer


Theorem elfm

Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion elfm XCBfBasYF:YXAXFilMapFBAXxBFxA

Proof

Step Hyp Ref Expression
1 fmval XCBfBasYF:YXXFilMapFB=XfilGenrantBFt
2 1 eleq2d XCBfBasYF:YXAXFilMapFBAXfilGenrantBFt
3 eqid rantBFt=rantBFt
4 3 fbasrn BfBasYF:YXXCrantBFtfBasX
5 4 3comr XCBfBasYF:YXrantBFtfBasX
6 elfg rantBFtfBasXAXfilGenrantBFtAXyrantBFtyA
7 5 6 syl XCBfBasYF:YXAXfilGenrantBFtAXyrantBFtyA
8 simpr XCBfBasYF:YXxBxB
9 eqid Fx=Fx
10 imaeq2 t=xFt=Fx
11 10 rspceeqv xBFx=FxtBFx=Ft
12 8 9 11 sylancl XCBfBasYF:YXxBtBFx=Ft
13 simpl1 XCBfBasYF:YXxBXC
14 imassrn FxranF
15 frn F:YXranFX
16 15 3ad2ant3 XCBfBasYF:YXranFX
17 16 adantr XCBfBasYF:YXxBranFX
18 14 17 sstrid XCBfBasYF:YXxBFxX
19 13 18 ssexd XCBfBasYF:YXxBFxV
20 eqid tBFt=tBFt
21 20 elrnmpt FxVFxrantBFttBFx=Ft
22 19 21 syl XCBfBasYF:YXxBFxrantBFttBFx=Ft
23 12 22 mpbird XCBfBasYF:YXxBFxrantBFt
24 10 cbvmptv tBFt=xBFx
25 24 elrnmpt yrantBFtyrantBFtxBy=Fx
26 25 ibi yrantBFtxBy=Fx
27 26 adantl XCBfBasYF:YXyrantBFtxBy=Fx
28 simpr XCBfBasYF:YXy=Fxy=Fx
29 28 sseq1d XCBfBasYF:YXy=FxyAFxA
30 23 27 29 rexxfrd XCBfBasYF:YXyrantBFtyAxBFxA
31 30 anbi2d XCBfBasYF:YXAXyrantBFtyAAXxBFxA
32 2 7 31 3bitrd XCBfBasYF:YXAXFilMapFBAXxBFxA