Metamath Proof Explorer


Theorem elfm2

Description: An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis elfm2.l L=YfilGenB
Assertion elfm2 XCBfBasYF:YXAXFilMapFBAXxLFxA

Proof

Step Hyp Ref Expression
1 elfm2.l L=YfilGenB
2 elfm XCBfBasYF:YXAXFilMapFBAXyBFyA
3 ssfg BfBasYBYfilGenB
4 3 1 sseqtrrdi BfBasYBL
5 4 sselda BfBasYyByL
6 5 adantrr BfBasYyBFyAyL
7 6 3ad2antl2 XCBfBasYF:YXyBFyAyL
8 simprr XCBfBasYF:YXyBFyAFyA
9 imaeq2 x=yFx=Fy
10 9 sseq1d x=yFxAFyA
11 10 rspcev yLFyAxLFxA
12 7 8 11 syl2anc XCBfBasYF:YXyBFyAxLFxA
13 12 rexlimdvaa XCBfBasYF:YXyBFyAxLFxA
14 1 eleq2i xLxYfilGenB
15 elfg BfBasYxYfilGenBxYyByx
16 14 15 bitrid BfBasYxLxYyByx
17 16 3ad2ant2 XCBfBasYF:YXxLxYyByx
18 imass2 yxFyFx
19 sstr2 FyFxFxAFyA
20 19 com12 FxAFyFxFyA
21 20 ad2antll XCBfBasYF:YXxYFxAFyFxFyA
22 18 21 syl5 XCBfBasYF:YXxYFxAyxFyA
23 22 reximdv XCBfBasYF:YXxYFxAyByxyBFyA
24 23 expr XCBfBasYF:YXxYFxAyByxyBFyA
25 24 com23 XCBfBasYF:YXxYyByxFxAyBFyA
26 25 expimpd XCBfBasYF:YXxYyByxFxAyBFyA
27 17 26 sylbid XCBfBasYF:YXxLFxAyBFyA
28 27 rexlimdv XCBfBasYF:YXxLFxAyBFyA
29 13 28 impbid XCBfBasYF:YXyBFyAxLFxA
30 29 anbi2d XCBfBasYF:YXAXyBFyAAXxLFxA
31 2 30 bitrd XCBfBasYF:YXAXFilMapFBAXxLFxA