Metamath Proof Explorer


Theorem fmfg

Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis elfm2.l L=YfilGenB
Assertion fmfg XCBfBasYF:YXXFilMapFB=XFilMapFL

Proof

Step Hyp Ref Expression
1 elfm2.l L=YfilGenB
2 1 elfm2 XCBfBasYF:YXxXFilMapFBxXsLFsx
3 fgcl BfBasYYfilGenBFilY
4 1 3 eqeltrid BfBasYLFilY
5 filfbas LFilYLfBasY
6 4 5 syl BfBasYLfBasY
7 elfm XCLfBasYF:YXxXFilMapFLxXsLFsx
8 6 7 syl3an2 XCBfBasYF:YXxXFilMapFLxXsLFsx
9 2 8 bitr4d XCBfBasYF:YXxXFilMapFBxXFilMapFL
10 9 eqrdv XCBfBasYF:YXXFilMapFB=XFilMapFL