Metamath Proof Explorer


Theorem codir

Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion codir A×BR-1RxAyBzxRzyRz

Proof

Step Hyp Ref Expression
1 opelxp xyA×BxAyB
2 df-br xR-1RyxyR-1R
3 brcodir xVyVxR-1RyzxRzyRz
4 3 el2v xR-1RyzxRzyRz
5 2 4 bitr3i xyR-1RzxRzyRz
6 1 5 imbi12i xyA×BxyR-1RxAyBzxRzyRz
7 6 2albii xyxyA×BxyR-1RxyxAyBzxRzyRz
8 relxp RelA×B
9 ssrel RelA×BA×BR-1RxyxyA×BxyR-1R
10 8 9 ax-mp A×BR-1RxyxyA×BxyR-1R
11 r2al xAyBzxRzyRzxyxAyBzxRzyRz
12 7 10 11 3bitr4i A×BR-1RxAyBzxRzyRz