Metamath Proof Explorer


Theorem filelss

Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filelss FFilXAFAX

Proof

Step Hyp Ref Expression
1 filfbas FFilXFfBasX
2 fbelss FfBasXAFAX
3 1 2 sylan FFilXAFAX