| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdm |  |-  ( F : A --> B -> dom F = A ) | 
						
							| 2 |  | frel |  |-  ( F : A --> B -> Rel F ) | 
						
							| 3 |  | resdm |  |-  ( Rel F -> ( F |` dom F ) = F ) | 
						
							| 4 | 3 | eqcomd |  |-  ( Rel F -> F = ( F |` dom F ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( F : A --> B -> F = ( F |` dom F ) ) | 
						
							| 6 |  | reseq2 |  |-  ( dom F = A -> ( F |` dom F ) = ( F |` A ) ) | 
						
							| 7 | 5 6 | sylan9eq |  |-  ( ( F : A --> B /\ dom F = A ) -> F = ( F |` A ) ) | 
						
							| 8 | 1 7 | mpdan |  |-  ( F : A --> B -> F = ( F |` A ) ) | 
						
							| 9 |  | ffun |  |-  ( F : A --> B -> Fun F ) | 
						
							| 10 |  | eqimss2 |  |-  ( dom F = A -> A C_ dom F ) | 
						
							| 11 | 1 10 | syl |  |-  ( F : A --> B -> A C_ dom F ) | 
						
							| 12 | 9 11 | jca |  |-  ( F : A --> B -> ( Fun F /\ A C_ dom F ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( F : A --> B /\ F = ( F |` A ) ) -> ( Fun F /\ A C_ dom F ) ) | 
						
							| 14 |  | fores |  |-  ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( F : A --> B /\ F = ( F |` A ) ) -> ( F |` A ) : A -onto-> ( F " A ) ) | 
						
							| 16 |  | foeq1 |  |-  ( F = ( F |` A ) -> ( F : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> ( F " A ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( F : A --> B /\ F = ( F |` A ) ) -> ( F : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> ( F " A ) ) ) | 
						
							| 18 | 15 17 | mpbird |  |-  ( ( F : A --> B /\ F = ( F |` A ) ) -> F : A -onto-> ( F " A ) ) | 
						
							| 19 | 8 18 | mpdan |  |-  ( F : A --> B -> F : A -onto-> ( F " A ) ) |