Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flddivrng | |- ( K e. Fld -> K e. DivRingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fld | |- Fld = ( DivRingOps i^i Com2 ) |
|
| 2 | inss1 | |- ( DivRingOps i^i Com2 ) C_ DivRingOps |
|
| 3 | 1 2 | eqsstri | |- Fld C_ DivRingOps |
| 4 | 3 | sseli | |- ( K e. Fld -> K e. DivRingOps ) |