Metamath Proof Explorer


Theorem fnebas

Description: A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009)

Ref Expression
Hypotheses fnebas.1
|- X = U. A
fnebas.2
|- Y = U. B
Assertion fnebas
|- ( A Fne B -> X = Y )

Proof

Step Hyp Ref Expression
1 fnebas.1
 |-  X = U. A
2 fnebas.2
 |-  Y = U. B
3 1 2 isfne4
 |-  ( A Fne B <-> ( X = Y /\ A C_ ( topGen ` B ) ) )
4 3 simplbi
 |-  ( A Fne B -> X = Y )