Metamath Proof Explorer


Theorem fnimasnd

Description: The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Hypotheses fnimasnd.1
|- ( ph -> F Fn A )
fnimasnd.2
|- ( ph -> S e. A )
Assertion fnimasnd
|- ( ph -> ( F " { S } ) = { ( F ` S ) } )

Proof

Step Hyp Ref Expression
1 fnimasnd.1
 |-  ( ph -> F Fn A )
2 fnimasnd.2
 |-  ( ph -> S e. A )
3 fnsnfv
 |-  ( ( F Fn A /\ S e. A ) -> { ( F ` S ) } = ( F " { S } ) )
4 1 2 3 syl2anc
 |-  ( ph -> { ( F ` S ) } = ( F " { S } ) )
5 4 eqcomd
 |-  ( ph -> ( F " { S } ) = { ( F ` S ) } )