Description: The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnimasnd.1 | |- ( ph -> F Fn A ) | |
| fnimasnd.2 | |- ( ph -> S e. A ) | ||
| Assertion | fnimasnd | |- ( ph -> ( F " { S } ) = { ( F ` S ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnimasnd.1 | |- ( ph -> F Fn A ) | |
| 2 | fnimasnd.2 | |- ( ph -> S e. A ) | |
| 3 | fnsnfv |  |-  ( ( F Fn A /\ S e. A ) -> { ( F ` S ) } = ( F " { S } ) ) | |
| 4 | 1 2 3 | syl2anc |  |-  ( ph -> { ( F ` S ) } = ( F " { S } ) ) | 
| 5 | 4 | eqcomd |  |-  ( ph -> ( F " { S } ) = { ( F ` S ) } ) |