Description: The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fnimasnd.1 | |- ( ph -> F Fn A ) |
|
fnimasnd.2 | |- ( ph -> S e. A ) |
||
Assertion | fnimasnd | |- ( ph -> ( F " { S } ) = { ( F ` S ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnimasnd.1 | |- ( ph -> F Fn A ) |
|
2 | fnimasnd.2 | |- ( ph -> S e. A ) |
|
3 | fnsnfv | |- ( ( F Fn A /\ S e. A ) -> { ( F ` S ) } = ( F " { S } ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> { ( F ` S ) } = ( F " { S } ) ) |
5 | 4 | eqcomd | |- ( ph -> ( F " { S } ) = { ( F ` S ) } ) |